
The GuitarBot
of Bits and Tones

Matura Paper, Kantonsschule Sargans

Author: Frank Schaufelberger, 4bNPW

Supervisor: Thomas Büsser

Submitted: January 6, 2014

Management Summary II

Management Summary

“GuitarBot” is an ambitious project to build a robot which is able to play music on four guitar strings.

The main part consists of the practical work, the development of the robot. The present paper is a

detailed documentation of how the GuitarBot turned from an idea into a working product. It describes

the many hurdles encountered by the mechanical aspects of the GuitarBot, the various pitfalls of the

electronic components and eventually the programming of the microcontroller.

The project was highly instructive and provided experience and insight into the world of engineering

and robotics, sectors in which I can see myself in the future.

Table of Contents III

Table of Contents

1 Introduction ... 1
1.1 Aim of the Project ... 1
1.2 Motivation and Inspiration ... 1
1.3 Structure of the Paper ... 1
1.4 Terminology .. 2

2 Hardware ... 3
2.1 Morphology ... 3
2.2 Choice of Components .. 3
2.2.1 Fretting the String ... 3
2.2.2 Linear Motion ... 4
2.2.3 Picking the String .. 4
2.2.4 Layout ... 4
2.3 Prototyping .. 5
2.4 Final Production .. 6

3 Electronics ... 7
3.1 The Microcontroller .. 7
3.2 Electronic Components ... 7
3.2.1 Stepper Driver ... 8
3.2.2 Servo Controller .. 8
3.2.3 Relay Board ... 8
3.2.4 SD Card Reader ... 9
3.2.5 Sensor Dock .. 9
3.2.6 Shield .. 9
3.2.7 Other Parts .. 10
3.3 Power Supply ... 10
3.3.1 Overvoltage and Flyback Diode .. 10

4 Software .. 12
4.1 Programming the Arduino... 12
4.1.1 Libraries .. 12
4.2 Controlling the Components ... 12
4.2.1 Stepper ... 13
4.2.2 Servos.. 13
4.2.3 Relays .. 14
4.2.4 Sensor ... 14
4.3 Program Ideas ... 14
4.4 Final Program .. 15
4.4.1 Calibration .. 16
4.4.2 Read a Line .. 16
4.4.3 Move Position ... 17
4.4.4 Play a Tone .. 18
4.4.5 Stop a Tone ... 18

5 Conclusion ... 19
5.1 What’s next? ... 19

References .. IV

List of Figures ... V

List of Abbreviations ... VII

Introduction 1

1 Introduction

1.1 Aim of the Project

The aim of the project “GuitarBot” is to build a machine, which is capable of playing music. An idea

should be created and realized from scratch. The development process of a product should be experi-

enced. The project is an opportunity to gain insight into the world of engineering, especially robotics.

1.2 Motivation and Inspiration

I have always been fascinated by the development of technology over time. Furthermore, music plays

a crucial role in my everyday life. There’s also the fact that I’m extremely interested in engineering and

product development. Given these conditions, the GuitarBot is the perfect project, combining my

probable future profession area with a lifetime passion. The outcome should not only be a working

product but also unique experience for life.

Of course, the GuitarBot is not the first project in the world to combine music and technology. “Com-

pressorhead” is a group of humanoid robots which play real instruments. “MechBass” is a machine

similar to the GuitarBot. Nevertheless, the ambition was to build a music robot from scratch, based on

own ideas, not to copy an existing one.

1.3 Structure of the Paper

The whole document is structured like the devel-

opment of the GuitarBot itself. After discussing

some ideas, the final form of the robot emerges

more and more. A prototype has to be built, suit-

able components have to be chosen. With the

mechanics fully assembled comes the part where

the electronics has to be installed. The last chap-

ter consists of software based aspects.

The use of technical terms couldn’t be avoided.

Therefore, the next chapter explains a few important terms, also words I invented by myself to de-

scribe certain components. A more extensive list of expressions can be found in the appendix.

Figure 1: The GuitarBot with the servos in the foreground

Introduction 2

1.4 Terminology

Fretter The fretter is the part of the GuitarBot which moves along the linear slide. When

toggled, a solenoid with a metal rod through its shaft pulls the string towards it.

The housing of the fretter also acts as the fret itself (Figure 15).

Muter The muter of the GuitarBot is the servo with rubber foam at the end of its arm.

When the muter lowers, the rubber foam mutes the string, and the tone is stopped

(Figure 2).

Picker The picker of the GuitarBot is the servo with a pick

(guitar plectrum) attached. Up and down move-

ments of the servo cause the pick to play the string

(Figure 2).

Servo motor A servo motor (Figure 2), or just servo, is an actua-

tor which allows precise positioning. However, a

servo has a limited rotary range.

Solenoid In engineering, a solenoid is a device which converts current into linear force.

There’s a metal rod inside a tightly wound coil. Whenever current flows through

the coil, a magnetic field is created and the metal rod is pulled inside the coil (Figure

5).

Stepper motor A stepper motor (Figure 6), or just stepper, is a motor which divides the rotation

into small, consistent steps. By telling the stepper how many steps to take, a precise

rotation can be achieved.

Timing belt A Timing belt (Figure 3) is a toothed belt

which can be used to transfer a rotation from

one axis onto another. In the GuitarBot, a tim-

ing belt is used to transform the rotation into

a linear movement.

Figure 3: Timing belt with the joints made
of cable connectors

Figure 2: Two servos acting as a
picker and a muter

Hardware 3

2 Hardware

The following chapters deal with the development of the GuitarBot’s hardware. Like humans, robots

also have “intelligence” on one side, and a body on the other side. The important point is that they

work together properly. Therefore, the constructor has to think ahead and adjust the form of the ma-

chine to its intended purpose. Or in other words: Form follows function.

2.1 Morphology

The function of the GuitarBot is to play guitar. If we take a look at the human body playing a guitar, we

can clearly see two parts of the action. There’s one hand plucking the strings and therefore deciding

on the timing of a tone. The second hand moves along the fretboard and presses the strings down to

change the pitch of a tone. This is also called “fretting” the strings.

There are two approaches for a guitar playing ro-

bot. One is to construct a machine which plays an

actual guitar, like humans do. The other approach

is to abstract the guitar and rebuild it as simple as

possible. Since the real guitar was constructed to

be played by a human, it’s just logical to redesign

the guitar so that it can be easily played by a ma-

chine. Based on the tasks mentioned above, the

guitar can be reduced to the strings (Figure 4, red)

and the frets (Figure 4, green).

2.2 Choice of Components

An important step is the choice of appropriate components. They should have a good price-perfor-

mance ratio.

2.2.1 Fretting the String

When playing a real guitar, the string is fretted by pressing it down be-

tween two frets. Now the string can only vibrate from the fret to the

other end, which results in a higher tone. A fixed fret, which shuttles

along the string is easy to build, but it produces disturbing noises and

damages the string while moving back and forth. The solution is a sole-

noid which pulls the string towards itself when triggered. The solenoid

is mounted in a self-made housing which also acts as the fret.

Figure 4: A real guitar compared to the GuitarBot with the
strings and frets highlighted (picture above, source: taylor-
guitars.com)

Figure 5: A solenoid is used to fret
the string

Hardware 4

2.2.2 Linear Motion

Somehow, the linear movement of the fretting hand has to be imitated by

the GuitarBot. There are linear motors, but they are very expensive and un-

suitable. So the rotation of a usual motor has to be transferred into a linear

motion. The best solution appears to be a timing belt. Because ordinary DC

motors can’t be driven precisely (which is essential to position the fretter),

the solution is either a servo motor or a stepper motor. The disadvantage of

the servo: It can’t rotate indefinitely. On the other side, stepper motors are

much more complex to control. Never-

theless, the stepper motor is chosen because the rotary limitation

of the servo is a huge drawback.

To stay on a straight track, the fretter moves back and forth on a

linear slide driven by the mentioned timing belt.

2.2.3 Picking the String

In order to achieve an efficient way of picking, the string has to be played in downstrokes (the pick

makes a downward movement) and upstrokes (the pick makes an upward movement). The problem

with solenoids is, that they only provide force in one direction, say in the downstroke direction. That

means that the force for the upstroke has to be caused by another part, e.g. a spring, which would

result in a greater effort in design. A satisfying solution seems to be a servo motor. Its limited range,

in our case about 180°, isn’t a problem here since the

movement of the pick isn’t a full rotation. Another servo

with foam rubber at the end of its arm is attached to

mute the tone.

There would also be the opportunity of attaching several

picks to a stepper motor, as it is done at the MechBass.

However, that would be a more expensive solution be-

sides the mentioned complexity in controlling a stepper.

2.2.4 Layout

Once the components are chosen, there are many different ways to arrange them. For most of the

parts there’s the question whether the string is located above or beside the whole mechanics. Above

would mean that the individual entities get quite narrow but high. However, the option with the string

next to the mechanics is easier to build since the construction is lower. One of the remaining issues,

Figure 6: A stepper motor
with a pulley

Figure 7: A segment of a linear slide

Figure 8: The picking mechanism at the MechBass
(source: youtube.com)

Hardware 5

which is worth mentioning, is the position of the stepper motor. Because it’s easier to have the pulleys

installed horizontally (the axis is horizontal), the stepper motor is also mounted horizontally. Still, there

are two options for its location. Either the motor is on the same layer as the rest of the mechanics, or

it’s located on a second, lower level. A second level comes in

handy when we get to the electronics and its installation.

Here’s where thinking ahead pays off!

Another aspect of thinking ahead is that the dimensions of the

GuitarBot are chosen so that the whole machine can be put in

a standard-box (width: 36cm, length: 56cm).

2.3 Prototyping

A prototype is usually built to test whether the concepts made on paper work in reality. The way to

the final product is an iteration of improvements and new prototypes. The very first GuitarBot proto-

type was built even before the majority of the ideas above have been developed. It only consisted of

a primitive linear slide (a part of a PVC tube around a

wooden rod), a fixed fret, and a string tensioned over the

construction. Of course the prototype wasn’t even able to

play a tone because there weren’t any motors or other

electronics attached. It was just useful to have an image of

the whole concept and it was easier to get to the later

ideas.

The second, more serious GuitarBot prototype had almost all the compo-

nents that the final GuitarBot has as well. It consisted of only one string

and the according mechanics. It revealed that a limit switch is necessary

to calibrate the stepper. The infrared sensor prevailed against a mechan-

ical switch, because it is non-contact and works well at short range. An

additional pulley with a spring (to tension the timing belt) turned out to

be unnecessary, if the timing belt has the

perfect length. Of course the self-designed

fretter also needed a revision and got, among other things, a guide for

the small rod which frets the string. There were also other, less significant

changes to the final GuitarBot which are not mentioned here.

Figure 9: The GuitarBot in a box

Figure 11: The additional pulley
of the second prototype

Figure 10: The first prototype's linear slide with
the string highlighted in red

Figure 12: The first fretter

Hardware 6

2.4 Final Production

In order to assemble the final robot as trouble-free as possible,

some preparation is to be done. All the components are digitally

drawn using Microsoft Visio. Now, the objects can be moved

around on the sketch to get to an optimal layout. An important part

of the layout are the boreholes. Once finished, the layout is printed

at scale 1:1. With this blueprint, the boreholes can be mapped onto

the board and are drilled in no time.

The Handcraft Challenge

It seems that the rest is just putting together the parts. On one side it’s true. On the other side, it’s

not that easy since the GuitarBot doesn’t base on an assembly kit such as LEGO Technics or Mak-

erBeam. Some parts are even self-made, such as the fretter housing (Figure 14, Figure 15). It’s an

elaborate object which isn’t made using a CNC milling machine, but with tinsnips and files. A lot of

other tools are used, e.g. a plunge saw, an awl, a rasp, or a soldering iron.

Figure 13: A sector of the layout (the
whole layout is in the appendix)

Figure 14: An aluminum sheet cut and bent... Figure 15: ...turns into the housing of the fretter

Electronics 7

3 Electronics

The Electronics is the part of the robot which controls the body. It’s the thing between hardware and

software which makes the two of them work together. Of course all the motors and sensors mentioned

above are also electronic parts, but in this chapter we will talk about the parts that are controlling the

others.

3.1 The Microcontroller

As already said, a robot needs a brain, a part on which the software is running and which controls the

other electronic components. There’s a microcontroller in almost every device nowadays. For the Gui-

tarBot, the microcontroller has to be effective but also easy to handle.

After extensive research and a conversation

with Prof. Reto Bonderer (Embedded Software

Engineering at the HSR), the microcontroller

board “Arduino” turns out to be suitable for

the GuitarBot. An Arduino consists of a micro-

controller with an open-source hardware

board built around it. Most of the microcon-

troller’s pins are exposed on the Arduino, which means connecting it to other components is very easy.

The pins are divided into digital and analog pins. Digital pins, whether input or output, can only distin-

guish between on and off. Analog pins, on the other hand, have a resolution of 10 bits, which means

they can have 1024 different values. What that means exactly and how we can use it should become

clear when we come to programming the Arduino (chapter 4.1). Probably the best thing about Arduino

is, that it’s completely open source. Meaning that all the software and plans for the modules are pub-

lished under a free license. As a result, there is a huge amount of additional boards available, some of

which will be mentioned in the following chapters.

3.2 Electronic Components

Besides the Arduino, there are a lot of other elec-

tronic boards inside the GuitarBot. The Arduino can

be seen as the highest controlling entity. It controls

the other boards, which control specific components

themselves.

Figure 16: Arduino Mega (source: arduino.cc)

Figure 17: Electronic hierarchy

Electronics 8

3.2.1 Stepper Driver

Stepper drivers are designed to undertake the complex process of controlling a stepper motor, while

the driver itself can be easily controlled. There are masses of different drivers, all with their pros and

cons. The “Big EasyDriver” by Sparkfun is a suitable driver for the

GuitarBot’s stepper motors. It is controlled over only two wires,

“Step” and “Direction”. As expected by the name, the driver causes

a step every time it receives a signal on “Step”. “Direction” is used

to set the direction in which the stepper motor is supposed to turn.

Therefore, the four stepper motors can be controlled over only eight

digital pins on the Arduino.

3.2.2 Servo Controller

When all the eight servos were controlled individually, they

would occupy eight pins on the Arduino. With the “16-Channel

PWM/Servo Driver” by Adafruit, we only need two pins to con-

trol 16 servos. The driver uses the I2C bus, which transfers data

serially over two special pins on the Arduino. The servos can

now be controlled by just sending commands to the servo

driver. Since every device which uses the I2C bus has its own

address, we could control multiple boards with the same two

pins. Therefore, we could chain up 62 of these servo drivers to

control up to 992 servos at a time with only two pins (Earl,

2013).

3.2.3 Relay Board

The solenoids require 12 volts, whereas the Arduino can only

provide 5 volts. Hence we need a separate power supply for

the solenoids. The Arduino still has to be able to control the

solenoids (i.e. turn them on and off). A relay is an electrical

switch, toggled by a low-power signal. Because it’s isolated, it

can be used to turn a high-power circuit on and off. The “4-

Channel Relay Module” by Sainsmart works well with Arduino

and is a suitable choice.

Figure 18: Big EasyDriver by Sparkfun

Figure 19: The servo controller already
hooked up to the GuitarBot

Figure 20: Relay module with additional pins

Electronics 9

3.2.4 SD Card Reader

In most cases, an Arduino uses an SD Card to log data, which it has col-

lected by reading from sensors. Why the GuitarBot needs an SD Card,

will be explained in chapter 4.3. There are several different card readers

available to work with the Arduino. The one used in the GuitarBot com-

municates with the Arduino over the SPI bus, a serial bus similar to the

I2C bus.

3.2.5 Sensor Dock

The self-made sensor dock isn’t a “real electronic” board, it is just a

board where some pins are merged. The infrared sensor contains two

separate parts. An infrared LED, and a phototransistor. Therefore, it has

four pins. One for the 5V supply, one to read the sensor’s value, and two

ground pins (Figure 22, above). Since four of these sensors are used,

there are 16 wires. To reduce the number of wires going to the Arduino,

all the ground pins and the 5V pins are merged (Figure 22, below). Now

there are 16 wires going onto the sensor dock, and just 6 coming out of

it. Because the sensor can’t just be hooked up to the Arduino and the

power supply (ameyer, 2011), the respective circuit has to be quadru-

pled and soldered onto the board.

3.2.6 Shield

Talking about Arduino, a shield is an electronic board with the pins arranged like the pins of the Ar-

duino. Thus, a shield can just be plugged on top of the Arduino. After reading about all the electronic

parts attached, one can imagine that there are a lot of

wires to be connected to the Arduino. With the self-

made shield, the Arduino can be easily disconnected

from the GuitarBot. There are several connectors on

the shield where the wires can be plugged into. From

there, they are connected to their according pins. The

shield is also the place where the power from the sup-

ply (highlighted in yellow) is distributed to the specific

parts (highlighted in blue).

Figure 21: SD card reader

Figure 22: Same pins highlighted
in the same color (picture above,
source: bildr.org)

Figure 23: The shield plugged into the Arduino with the
components connected and highlighted

Electronics 10

3.2.7 Other Parts

The stepper driver doesn’t only have the two mentioned pins “Step” and

“Direction”. In fact, there are seven wires coming from each stepper

driver, i.e. 28 altogether (Figure 24, highlighted in red). To minimize the

number of wires going to the Arduino (Figure 23, highlighted in red), a mo-

tor dock is constructed where the wires are plugged in. Power supply pins

are merged, and pins which can be used to set the stepping type are con-

nected to a switch on the board. Thereby, the number of wires going to

the Arduino (Figure 24, highlighted in green) can be reduced from 28 to 10.

Another dock is located near the relay board, the servo driver, and

the sensor dock. There, the wires of these boards meet. Again, pins

for the power supply are merged (Figure 25, highlighted in blue)

and the wires going to the Arduino (Figure 23, highlighted in green)

are reduced from 20 to 14.

On some photographs, one can also see a liquid-crystal display and

a joystick. These parts were used for test programs but are not re-

quired for the final program.

3.3 Power Supply

To supply the GuitarBot with power, a power adapter which provides 5 and 12 volts is used. The 5V

and 12V wire, as well as the ground wires, go onto the shield where the power is distributed.

3.3.1 Overvoltage and Flyback Diode

Switching off the solenoids cause an interference which severely disturbs the other components and

crashes the Arduino. This interference can be reduced using a “flyback diode”. This measure protects

the Arduino. Unfortunately, there is still an issue with the solenoids. Whenever a solenoid is turned

off, the stepper motors move one step, because they are connected to the same 12V supply. Maybe,

the interference could be removed by another electronic component (e.g. an RC-filter, a resistor-ca-

pacitor circuit). But the easiest solution is to use an individual 12V power supply for the solenoids.

Herewith, the occurred problems with the solenoids are solved.

The reason why the flyback diode works is rather tricky and not important throughout the rest of the

paper. Nevertheless, here’s a short explanation:

Figure 24: Inputs highlighted in
red, outputs in green

Figure 25: Inputs for the sensor dock
(red), relay module (pink), and servo
controller (green) and output to the Ar-
duino (yellow)

Electronics 11

Turning off the power supply of an inductor isn’t as harmless as it might

seem. When an inductor (like a solenoid) is provided with voltage, a mag-

netic field is created. According to physics, moving electrons create a mag-

netic field. Alternatively, a magnetic field changing its strength or polarity

causes electrons to move. Let us apply that to the solenoid. If the solenoid

is supplied with voltage, a magnetic field is created. If we now, all of a sud-

den, turn off the voltage, the magnetic field collapses. The solenoid now acts

as a generator, giving the electrons some extra push. A voltage peak occurs.

Although the power supply for the solenoid is just 12 volts, this voltage peak

can be hundreds of volts. The quicker the shut-off, the greater the peak. This

peak causes the Arduino to crash and reboot.

A so called flyback diode seems to be the solution to the problem. A

regular diode is attached to the circuit, so that it’s not conducting when

the solenoid is turned on (Figure 26). As soon as the power supply is

turned off, the flyback diode shunts the voltage back into the solenoid

(Figure 27). As a result, the magnetic field collapses much slower and

the generated voltage will be lower (Krantz, n.d.).

Figure 26: Electron flux
when the solenoid is pro-
vided with current (source:
douglaskrantz.com)

Figure 27: Electron flux shortly af-
ter turning off the power supply
(source: douglaskrantz.com)

Software 12

4 Software

The only thing missing now, is the software. In this chapter, we will get to know the program which is

running on the GuitarBot. The goal is to figure out what the program does, without knowing the spe-

cific coding language.

4.1 Programming the Arduino

The Arduino provides its own IDE (integrated develop-

ment environment). The code, in which the Arduino is

programmed is simplified C++. But it’s not as complicated

as it sounds. There are a lot of libraries that make coding

easier. A program on the Arduino needs two essential

parts. There is the “setup()”-part, which is executed once

the program starts, and there’s the “loop()”-part, which

is looped all the time until the program is interrupted

(Figure 28). These two parts are important for the under-

standing of the program itself. We already know that the Arduino has two kinds of pins. Digital and

analog pins. Every pin can be used as an input or an output. This means that we can either “read” from

a pin or “write” to a pin. If we read from a digital pin using “digitalRead()”, the returned value is either

“HIGH” or “LOW”. Accordingly, when we write to a digital pin using “digitalWrite()”, it provides 5V if

we write a “HIGH” value, or 0V if we write a “LOW” value. The analog pins have a resolution of 10-bit,

which means if we read from an analog pin using “analogRead()”, the input between 0V and 5V is

mapped to a value from 0 to 1023. If we write to an analog pin using “analogWrite()”, it can simulate

voltages between 0V and 5V, using pulse-width modulation (PWM, which we won’t discuss here any

further).

4.1.1 Libraries

As already mentioned, there are a lot of libraries available for everything one could imagine. If we take

the example of the servo driver, which uses the I2C-Bus, it would require a lot of complicated code to

send a single command to the driver. With the corresponding library “Adafruit_PWMServoDriver”,

moving a servo to a certain position can be achieved in one line of code.

4.2 Controlling the Components

Already during the process of prototyping, first programs were written to test the components and to

get used to how to control them.

Figure 28: A simple Arduino program which turns a
relay connected to pin 33 on and off

Software 13

4.2.1 Stepper

To control the stepper motors, the li-

brary “AccelStepper” by Mike McCauley

is used. The library is compatible with

most drivers and has some great fea-

tures. AccelStepper can not only move

multiple stepper motors at a constant

speed, but it can also implement acceler-

ations. Furthermore, it has a position

tracker to know at which “position” the stepper is. An essential feature of the AccelStepper library is,

that it’s non-blocking. When we tell the stepper motor to move to a certain position, the program

doesn’t wait until the position is reached. To move the stepper, we just have to update the target

position of the stepper object. Every time we call “stepper.runSpeedToPosition()”, the motor moves

one step, if a step is due. In order to obtain a fluent rotation, “stepper.runSpeedToPosition()” must be

called as frequently as possible (Figure 29).

4.2.2 Servos

The servo driver uses its own library called “Adafruit_PWMServoDriver”. We create a driver object, on

which we can execute the commands to control the servos. The driver has 16 ports which can be con-

trolled over the same object. A servo motor expects a PWM signal. Depending on the pulse width, the

servo then moves to the corresponding position. In other words, we can’t tell the servo to “move to

position 90°”, but we have to send a “HIGH” signal for 1.6ms (pulse width) instead.

Analog servos run at about 50 Hz updates, which means the PWM period measures 20 milliseconds

(Salt, n.d.). With the mentioned library, a servo’s position is set with “pwm.setPWM(int port, int on,

int off)”, where “port” is the port on the driver to be updated. “On” (a value between 0 and 4095), is

the time in the period when the signal is turned on. “Off” (a value between 0 and 4095), is the time in

the period when the signal is turned off again. The time during which the signal is “HIGH” is the pulse

width (Figure 30).

Figure 29: Example of driving a stepper using AccelStepper

Figure 30: Concept of pulse-width modulation

Software 14

Our servos range from a pulse width of approximately 0.6ms (on – 0, off – 150), which is all the way to

one side, to 2.6ms (on – 0, off – 630), which is all the way to the other side. This results in a rotation

range of about 180°.

4.2.3 Relays

Controlling the relay board is really simple. Each of the four relays has a separate pin which is con-

nected to a digital pin on the Arduino. Now if for example “digitalWrite(33, LOW)” is executed, the

relay connected to pin 33 is turned on. Correspondingly, if “digitalWrite(33, HIGH)” is executed, the

relay on pin 33 is turned off (Figure 28).

4.2.4 Sensor

With the function “analogRead(int port)”, we can easily get the

sensor’s value (Figure 31). A value between 0 and 1023 is re-

turned. The closer the object is to the sensor, the lower the

value. Because the sensor is only suitable at short range, there

is a remarkable drop in the returned value even when the ob-

ject gets 1mm closer to the sensor. That’s very convenient, be-

cause the stepper can be calibrated highly accurate. Under normal circumstances the sensor returns a

value below 300, when the fretter is at the end of the linear slide. Therefore, 300 is an appropriate

limit value. Usually, an infrared sensor isn’t influenced by visible light. Nevertheless, extreme bright-

ness can cause minor changes in the returned values.

4.3 Program Ideas

The whole concept of the program is to play a preset (i.e. hard coded) song with the GuitarBot. First

thoughts revealed that the program is just some functions put together, namely “move”, “play”, and

“stop”. Each of the four strings should be controlled individually.

Unfortunately, the Arduino is not multi-threading, i.e. it can’t run multiple functions simultaneously.

There’s no problem with that until it comes to moving the stepper motors. A lot of stepper libraries

have blocking functions, which is unsuitable when two steppers should run at the same time. Luckily,

the AccelStepper library is non-blocking as mentioned above.

The unsatisfactory thing about the concept of a preset song is, that a program can only play that exact

song. If another song wants to be played, a new program has to be written. So the song should not be

hard coded. The solution is to store the commands of the song in a CSV-file and write a program which

executes these commands one after another.

Figure 31: Reading the value from the sen-
sor on port "A3" and storing it to "val"

Software 15

One command consists of three or four parts:

𝑇𝑖𝑚𝑒; 𝑆𝑡𝑟𝑖𝑛𝑔; 𝐶𝑜𝑚𝑚𝑎𝑛𝑑; 𝑆𝑡𝑒𝑝𝑠

For example:

2000; 2; 𝑚; 370 // move the fretter on the 3rd string to position 370

2500; 2; 𝑝; // after 500 milliseconds, play a tone on the 3rd string

2980; 2; 𝑠; // stop the tone on the 3rd string after 480 milliseconds

The first part is the time (in milliseconds) at which the command has to be executed. Followed by the

string (number from 0 to 3) on which the command has to be executed. Then comes the command

itself (“m”, “p”, or “s”), i.e. “move”, “play” or “stop”. If the command is “m”, there’s another part

containing the target position.

Another option is to store these values in four different arrays. However, arrays can get quite incon-

venient, since they have to be edited in the program itself. Also, arrays with a lot of values get very

unclear. In comparison, values in a CSV file can be easily created and edited using Excel, and every

command has its own line (as indicated above). The CSV file is saved on an SD card which is later read

by the Arduino. The downside of this option is that reading out a file from an SD card with the Arduino

is not as simple as reading values from an array. But after all, the advantages outweigh the disad-

vantages.

4.4 Final Program

First, some preferences are set. Limit values for the sensors, positions for the servos, and the speed of

the stepper motors, just to mention a few. In the setup of the program, all the servos are moved to

their start position, the stepper motors are calibrated, and the file “guitarbot.csv” on the SD card is

opened. Before the loop begins, the first line of the CSV file is read and the values of the line are stored

into individual variables. The loop itself consists of a very simple procedure. If the timer reaches the

Software 16

value of “myTime”, the according command is executed and a new line is read. Whether or not a com-

mand was executed, “runSpeedToPosition” is called 1000 times for each stepper motor, in order to

achieve a fluent movement.

4.4.1 Calibration

When the GuitarBot is turned on, the fretters can be at any position on the linear slide. Because the

Arduino itself doesn’t know where they are, the stepper motors have to be calibrated. This means that

every fretter moves toward the beginning of its linear slide, until the IR-sensor reports that the end is

reached (Figure 33). The position tracker is then set to zero. From now on, the Arduino always knows

where the fretter is situated, thanks

to the position tracker of the Accel-

Stepper library (except if the timing

belt slips, i.e. the stepper makes a

step but the fretter doesn’t move,

which fortunately doesn’t happen a

lot).

4.4.2 Read a Line

In order to understand the reading of a line, some things have to be clarified. First, the SD card library

only reads one character at a time when reading from a file. Furthermore, the CSV file is plain ASCII

text. The structure of the CSV file is also important (see chapter 4.3). For a clearer understanding,

there’s a flowchart at the end of this chapter (Figure 34).

To get the first part of the line (the time), every character until the first semicolon is stored to

“myTime”, using the following procedure:

𝑚𝑦𝑇𝑖𝑚𝑒 = 𝑚𝑦𝑇𝑖𝑚𝑒 × 10 + (𝑐 − 48)

“c” is the currently read character. “0” is the 48th character in the ASCII table. Therefore, “0” converted

to an integer would be “48” (hence “c - 48”). Since the numbers are treated as single characters, the

previous value of “myTime” has to be multiplied by 10 before the new number is added. As an exam-

ple: The number is “23”. The first number stored to “myTime” is “2”. The second number to be stored

is “3”. If we multiply “myTime” by 10 before the addition, we get to the desired value of “23”.

Figure 32: Flowchart of the program running on the GuitarBot

Figure 33: Calibration of the stepper

Software 17

After reading the semicolon, the second part of the line (a number) is stored to the variable “myString”.

This number indicates on which string the command has to be executed. “0” is the first string, “3” is

the fourth string. Here, too, we have to subtract 48 from the character in order to get the right value.

The next character should be a semicolon again, followed by the command. There are three options:

“m” for move, “p” for play, or “s” for stop. Since the data-type of the variable “myCommand” is “char-

acter”, our command can be stored as it is (no subtracting, like with the numbers).

If the command is “m”, another number (the new target position) is expected after the semicolon. The

number is stored to “mySteps” with the same procedure like the time has been stored to “myTime”.

The very last characters on each line are “\r” – carriage return, and “\n” – line feed (both not visible

when viewing the file in an editor), which indicate the end of the line, and therefore the end of the

function “readLine()”.

We now have the individual values from the line in the variables “myTime”, “myString”, “my-

Command”, and “mySteps”.

4.4.3 Move Position

The function “movePosition(int _string,

int _position)” requests two arguments.

The first one is the string on which the

function is applied to, and the second

one is the position to where the fretter

has to be moved. If the fretter is not

ready to move (a tone is played on that string), a forced “stopTone(int _string)” is called. When the

fretter is ready to move and “_pos” is within a certain limit (maxSteps), the target position of the ac-

cording stepper motor is updated to the new position. The actual movements of the stepper motors

are caused by the call of “stepper[i].runSpeedToPosition()”, for i from 0 to 3, at the end of each loop

(Figure 32).

Figure 34: Simplified flowchart to the function "readLine()"

Figure 35: The function executed when "myCommand" is "m"

Software 18

4.4.4 Play a Tone

One of the most important functions is “playTone(int _string)”. The number delivered in the argument

tells the function, which string has to be plucked. We get the number of the servo-ports on the con-

troller by the following two functions:

_𝑃𝐼𝐶𝐾𝐸𝑅 = _𝑠𝑡𝑟𝑖𝑛𝑔 × 2

_𝑀𝑈𝑇𝐸𝑅 = _𝑠𝑡𝑟𝑖𝑛𝑔 × 2 + 1

This means that for string number 1 (the

2nd string), the picker is on port 2 and the

muter is on port 3. After the fretter is

triggered, the muter is lifted. If the

picker is below the string, an upstroke is

implemented, if the picker is above the

string, the function causes a downstroke

(Figure 36).

4.4.5 Stop a Tone

Stopping a tone is the easiest of all functions. When the function is called with the string number in

the argument, the muter lowers and the fretter is released. The fretter is now ready to change position

again (Figure 37). “stopTone(int _string)” uses the same function to get to the muter-port from the

string number as “playTone(int _string)”.

Figure 36: Code snippet showing the function "playTone(int _string)"

Figure 37: "stopTone(_string)", used to mute a played tone

Conclusion 19

5 Conclusion

The GuitarBot was a great project be-

cause it gave an insight into the proce-

dure of developing a product. It’s im-

pressive how labor-intensive and time-

consuming it is to realize an idea from

scratch. The production of an object

runs through a lot of phases and alt-

hough the way to the final product

seems obvious in the end, there’s a lot

of try and error involved in the origina-

tion process. Furthermore, a lot of issues are encountered during the production which weren’t taken

into consideration in the planning (e.g. the interference of the solenoids, see chapter 3.3.1). Of course

the creation of a machine in general is only possible if certain resources are available. For example

various components to choose from (see chapter 2.2), or specific tools to assemble the mechanics (see

chapter 2.4), just to mention a few.

Although the GuitarBot was a lot of work, it was highly instructive and a lot of experience could be

gained.

5.1 What’s next?

The GuitarBot in its present state is working as intended. But of course, it can be improved further.

There are several things that can be added to extend the GuitarBot even more. For example a program

which converts a MIDI file into a GuitarBot-compatible CSV file, or the amplification of the tone by a

special pickup system. But that would certainly go beyond the scope of this thesis.

Figure 38: The GuitarBot from another perspective

References IV

References

ameyer. (2011, March 8). bildr » Are we getting close? Proximity Sensors + Arduino. Retrieved from

bildr.org: www.bildr.org/2011/03/various-proximity-sensors-arduino/

Arduino LLC. (2012). Arduino Projects Book. Turin.

Arduino LLC. (n.d.). Arduino - Reference. Retrieved from arduino.cc:

www.arduino.cc/en/Reference/HomePage

Bonderer, R. (2013, June 14). Diskussion über Robotikplattformen. (F. Schaufelberger, Interviewer)

Earl, B. (2013, June 20). Overview | Adafruit 16-Channel Servo Driver with Arduino | Adafruit Learning

System. Retrieved from learn.adafruit.com: learn.adafruit.com/16-channel-pwm-servo-

driver/overview

Krantz, D. (n.d.). Flyback Diode. Retrieved from douglaskrantz.com:

www.douglaskrantz.com/Flyback_Diode.html

McVay, J. (2012, November 21). MechBass - Hysteria - YouTube. Retrieved from youtube.com:

www.youtube.com/watch?v=5UYMnzXQEtw

Roberts, D. (2011). Making Things Move. Sebastopol: O'Reilly.

Salt, J. (n.d.). Understanding RC Servos – Digital, Analog, Coreless, Brushless. Retrieved from

rchelicopterfun.com: www.rchelicopterfun.com/rc-servos.html

Taylor Guitars. (n.d.). 510ce | Taylor Guitars. Retrieved from taylorguitars.com:

www.taylorguitars.com/guitars/acoustic/510ce

List of Figures V

List of Figures

Figure 1: The GuitarBot with the servos in the foreground .. 1

Figure 2: Two servos acting as a picker and a muter .. 2

Figure 3: Timing belt with the joints made of cable connectors ... 2

Figure 4: A real guitar compared to the GuitarBot with the strings and frets highlighted (picture above,

source: taylorguitars.com) .. 3

Figure 5: A solenoid is used to fret the string ... 3

Figure 6: A stepper motor with a pulley ... 4

Figure 7: A segment of a linear slide ... 4

Figure 8: The picking mechanism at the MechBass (source: youtube.com) ... 4

Figure 9: The GuitarBot in a box ... 5

Figure 10: The first prototype's linear slide with the string highlighted in red 5

Figure 11: The additional pulley of the second prototype .. 5

Figure 12: The first fretter ... 5

Figure 13: A sector of the layout (the whole layout is in the appendix) ... 6

Figure 14: An aluminum sheet cut and bent... .. 6

Figure 15: ...turns into the housing of the fretter ... 6

Figure 16: Arduino Mega (source: arduino.cc) .. 7

Figure 17: Electronic hierarchy.. 7

Figure 18: Big EasyDriver by Sparkfun ... 8

Figure 19: The servo controller already hooked up to the GuitarBot ... 8

Figure 20: Relay module with additional pins ... 8

Figure 21: SD card reader .. 9

Figure 22: Same pins highlighted in the same color (picture above, source: bildr.org) 9

Figure 23: The shield plugged into the Arduino with the components connected and highlighted 9

Figure 24: Inputs highlighted in red, outputs in green.. 10

Figure 25: Inputs for the sensor dock (red), relay module (pink), and servo controller (green) and output

to the Arduino (yellow) ... 10

Figure 26: Electron flux when the solenoid is provided with current (source: douglaskrantz.com) 11

Figure 27: Electron flux shortly after turning off the power supply (source: douglaskrantz.com) 11

Figure 28: A simple Arduino program which turns a relay connected to pin 33 on and off 12

Figure 29: Example of driving a stepper using AccelStepper .. 13

Figure 30: Concept of pulse-width modulation .. 13

Figure 31: Reading the value from the sensor on port "A3" and storing it to "val" 14

Figure 32: Flowchart of the program running on the GuitarBot ... 16

file:///C:/Users/Frank.EFI-FRANKS/Documents/MA/Documents/MA_Bild.docx%23_Toc376127042
file:///C:/Users/Frank.EFI-FRANKS/Documents/MA/Documents/MA_Bild.docx%23_Toc376127043
file:///C:/Users/Frank.EFI-FRANKS/Documents/MA/Documents/MA_Bild.docx%23_Toc376127044
file:///C:/Users/Frank.EFI-FRANKS/Documents/MA/Documents/MA_Bild.docx%23_Toc376127045
file:///C:/Users/Frank.EFI-FRANKS/Documents/MA/Documents/MA_Bild.docx%23_Toc376127045
file:///C:/Users/Frank.EFI-FRANKS/Documents/MA/Documents/MA_Bild.docx%23_Toc376127046
file:///C:/Users/Frank.EFI-FRANKS/Documents/MA/Documents/MA_Bild.docx%23_Toc376127047
file:///C:/Users/Frank.EFI-FRANKS/Documents/MA/Documents/MA_Bild.docx%23_Toc376127048
file:///C:/Users/Frank.EFI-FRANKS/Documents/MA/Documents/MA_Bild.docx%23_Toc376127049
file:///C:/Users/Frank.EFI-FRANKS/Documents/MA/Documents/MA_Bild.docx%23_Toc376127050
file:///C:/Users/Frank.EFI-FRANKS/Documents/MA/Documents/MA_Bild.docx%23_Toc376127051
file:///C:/Users/Frank.EFI-FRANKS/Documents/MA/Documents/MA_Bild.docx%23_Toc376127052
file:///C:/Users/Frank.EFI-FRANKS/Documents/MA/Documents/MA_Bild.docx%23_Toc376127053
file:///C:/Users/Frank.EFI-FRANKS/Documents/MA/Documents/MA_Bild.docx%23_Toc376127054
file:///C:/Users/Frank.EFI-FRANKS/Documents/MA/Documents/MA_Bild.docx%23_Toc376127055
file:///C:/Users/Frank.EFI-FRANKS/Documents/MA/Documents/MA_Bild.docx%23_Toc376127056
file:///C:/Users/Frank.EFI-FRANKS/Documents/MA/Documents/MA_Bild.docx%23_Toc376127057
file:///C:/Users/Frank.EFI-FRANKS/Documents/MA/Documents/MA_Bild.docx%23_Toc376127058
file:///C:/Users/Frank.EFI-FRANKS/Documents/MA/Documents/MA_Bild.docx%23_Toc376127059
file:///C:/Users/Frank.EFI-FRANKS/Documents/MA/Documents/MA_Bild.docx%23_Toc376127060
file:///C:/Users/Frank.EFI-FRANKS/Documents/MA/Documents/MA_Bild.docx%23_Toc376127061
file:///C:/Users/Frank.EFI-FRANKS/Documents/MA/Documents/MA_Bild.docx%23_Toc376127062
file:///C:/Users/Frank.EFI-FRANKS/Documents/MA/Documents/MA_Bild.docx%23_Toc376127063
file:///C:/Users/Frank.EFI-FRANKS/Documents/MA/Documents/MA_Bild.docx%23_Toc376127064
file:///C:/Users/Frank.EFI-FRANKS/Documents/MA/Documents/MA_Bild.docx%23_Toc376127065
file:///C:/Users/Frank.EFI-FRANKS/Documents/MA/Documents/MA_Bild.docx%23_Toc376127066
file:///C:/Users/Frank.EFI-FRANKS/Documents/MA/Documents/MA_Bild.docx%23_Toc376127066
file:///C:/Users/Frank.EFI-FRANKS/Documents/MA/Documents/MA_Bild.docx%23_Toc376127067
file:///C:/Users/Frank.EFI-FRANKS/Documents/MA/Documents/MA_Bild.docx%23_Toc376127068
file:///C:/Users/Frank.EFI-FRANKS/Documents/MA/Documents/MA_Bild.docx%23_Toc376127069
file:///C:/Users/Frank.EFI-FRANKS/Documents/MA/Documents/MA_Bild.docx%23_Toc376127070
file:///C:/Users/Frank.EFI-FRANKS/Documents/MA/Documents/MA_Bild.docx%23_Toc376127071
file:///C:/Users/Frank.EFI-FRANKS/Documents/MA/Documents/MA_Bild.docx%23_Toc376127072
file:///C:/Users/Frank.EFI-FRANKS/Documents/MA/Documents/MA_Bild.docx%23_Toc376127073

List of Figures VI

Figure 33: Calibration of the stepper .. 16

Figure 34: Simplified flowchart to the function "readLine()" .. 17

Figure 35: The function executed when "myCommand" is "m" ... 17

Figure 36: Code snippet showing the function "playTone(int _string)".. 18

Figure 37: "stopTone(_string)", used to mute a played tone ... 18

Figure 38: The GuitarBot from another perspective ... 19

Unless specified otherwise, the figures were self-created.

file:///C:/Users/Frank.EFI-FRANKS/Documents/MA/Documents/MA_Bild.docx%23_Toc376127074
file:///C:/Users/Frank.EFI-FRANKS/Documents/MA/Documents/MA_Bild.docx%23_Toc376127075
file:///C:/Users/Frank.EFI-FRANKS/Documents/MA/Documents/MA_Bild.docx%23_Toc376127076
file:///C:/Users/Frank.EFI-FRANKS/Documents/MA/Documents/MA_Bild.docx%23_Toc376127077
file:///C:/Users/Frank.EFI-FRANKS/Documents/MA/Documents/MA_Bild.docx%23_Toc376127078
file:///C:/Users/Frank.EFI-FRANKS/Documents/MA/Documents/MA_Bild.docx%23_Toc376127079

List of Abbreviations VII

List of Abbreviations

ASCII American Standard Code for Information Interchange

CNC Computer Numerical Control

CSV Comma-Separated Values

DC Direct Current

HSR Hochschule für Technik Rapperswil

I2C Integrated Circuit

IDE Integrated Development Environment

LED Light Emitting Diode

MIDI Musical Instrument Digital Interface

PWM Pulse-Width Modulation

SD Secure Digital

SPI Serial Peripheral Interface

Appendix

Terminology .. A1

Program Code .. A4

Layout ... A9

Electrical Scheme ... A10

List of Materials ... A11

Terminology A1

Terminology

Arduino Arduino (Figure 16) is an open source microcontroller board. The pins are exposed

so that it can be easily connected to other things. The program running on it is writ-

ten in simplified C++.

Array An array is a list of values. A variable only holds one value, whereas multiple values

can be stored in an array.

Blocking In terms of programming, a command can be blocking. This means that the general

flow of a program is interrupted, until the command is fully executed. For example

the rotation of a stepper motor can be a blocking command.

C++ C++ is one of the most popular coding languages. It is often used for embedded

systems because it’s rather low-level, which can be understood as “close to the

hardware”.

CSV “Comma-Separated Values” is a file format, which allows to store tabular data as

plain text. Like in a table, there are rows and columns. Each line represents one

row. The cells are separated by commas. A sample line of a CSV file can be seen in

chapter 4.3. In the GuitarBot’s CSV files, the values are separated by semicolons.

Since the separator character doesn’t have to be a comma, CSV is also called “Char-

acter-Separated Values”.

Diode A diode is an electronic component which lets current only flow in one direction.

Fretboard / Fret The Fretboard is the board attached to a guitar’s neck. The frets inserted in this

board are used to change the pitch of a tone. The string can be pushed down onto

the fretboard between two frets. Now the string can only vibrate from one fret to

the other end of the string.

Fretter The fretter is the part of the GuitarBot which moves along the linear slide. When

toggled, a solenoid with a metal rod through its shaft pulls the string towards it.

The housing of the fretter also acts as the fret itself (Figure 15).

Terminology A2

Humanoid A robot which is humanoid has a body similar to a human body. For example a head,

two arms and two legs.

int int, short for integer, is a data-type. Every time a new variable is created, its data-

type has to be declared. For example in “int x”, the variable “x” can only be filled

with an integer. In “digitalRead(int port)”, it means that the function requests an

integer as an argument (which will be immediately put into the variable “port”).

Linear slide A linear slide is a bearing which provides free motion in only one dimension (Figure

7).

Microsoft Visio Microsoft Visio is an application for drawing diagrams and vector graphics. It’s for

example used to draw flowcharts, but it’s also convenient to draw mechanical con-

structions, e.g. the layout to the GuitarBot (Figure 13).

Muter The muter of the GuitarBot is the servo with rubber foam at the end of its arm.

When the muter lowers, the rubber foam mutes the string, and the tone is stopped

(Figure 2).

Pick A plectrum (also called pick) is a tool, usually made of plastic, to strum the strings

of a guitar.

Picker The picker of the GuitarBot is the servo with a pick attached (Figure 2). Up and down

movements of the servo cause the pick to play the string. The pick moving down

across the string is called a downstroke, whereas the pick moving up across the

string is called an upstroke.

Pulley A pulley (Figure 6) is a wheel used with a timing belt. It can be used to drive the

timing belt (when connected to a motor), to support the movement of the timing

belt, or to transmit force from the timing belt (when connected to another compo-

nent).

Relay A relay is an electrically operated switch. It can be toggled using a low power circuit

on one side of the relay. On the other side of the relay, where it acts as a switch,

can be a high power circuit.

Terminology A3

Servo motor A servo motor (Figure 2), or just servo, is an actuator which allows precise position-

ing. However, a servo has a limited rotary range.

Shield Talking about Arduino, a shield is a board with the pins arranged like the Arduino’s

pins. Hence, it can be easily plugged in by stacking it on top of the Arduino.

Solenoid In engineering, a solenoid is a device which converts current into a linear force.

There’s a metal rod inside a tightly wound coil. Whenever current flows through

the coil, a magnetic field is created and the metal rod is pulled inside the coil (Figure

5).

Stepper motor A stepper motor (Figure 6), or just stepper, is a motor which divides the rotation

into small steps. By telling the stepper how many steps to take, a precise rotation

can be achieved.

Timing belt A Timing belt (Figure 3) is a toothed belt which can be used to transfer a rotation

from one axis onto another. In the GuitarBot, a timing belt is used to transform the

rotation into a linear movement.

Program Code A4

Program Code

Program Code A5

Program Code A6

Program Code A7

Program Code A8

Layout A9

Layout

Electrical Scheme A10

Electrical Scheme

List of Materials A11

List of Materials

 Bezugsquelle Anzahl

Allgemein

Holzplatten Coop 2

Diverse Kabel / Stecker Play-Zone.ch

Breadboard Kabel Set Play-Zone.ch 1

Distanzbolzen 50mm Conrad.ch 6

Diverse Schrauben Coop

Kiste Utz Rako Jumbo 1

Mainboard

Arduino Mega sparkfun.com 1

SD Kartenleser Play-Zone.ch 1

Relais Modul Play-Zone.ch 1

Power Supply sparkfun.com 1

Power Molex Connector sparkfun.com 1

Servos

Servo/PWM Driver Play-Zone.ch 1

Servo Hitec HS-311 Conrad.ch 8

Plektron Musik Hug 4

Distanzbolzen 20mm Conrad.ch 16

Metallbügel Bauhaus 8

Antrieb

DIP-Schalter 4P Play-Zone.ch 1

Big EasyDriver sparkfun.com 4

Heatsink sparkfun.com 4

Halterung für 5mm Achse hobbymodellbau.ch 16

Montagewinkel NEMA-17 physicalcomputing.at 4

Pulley GT2, 36 Teeth robodigg.com 8

Pulley GT2, 20 Teeth robodigg.com 4

GT2 Teeth Belt robodigg.com 4

NEMA-17 Stepper Motor robodigg.com 4

List of Materials A12

Fretter

Linearführung igus.ch 4

IR Sensor physicalcomputing.at 4

Widerstandsnetzwerk Conrad.ch 2

Zylinderspule Conrad.ch 5 (1 ging kaputt)

Alu Blech Coop 1

Saiten

Gitarren-Saiten Musik Hug 4

Ringschrauben Coop 8

Distanzbolzen 60mm Pusterla 8

Saiten-Spanner (im Keller gefunden) 4

Declaration of Authenticity

I hereby declare that the work submitted is my own and that all passages and ideas that are not mine

have been fully and properly acknowledged.

Place and date: _________________________

Signature: _________________________

