The GuitarBot

of Bits and Tones

01000111 010101
01010100 010000»

Matura Paper, Kantonsschule Sargans

Author: Frank Schaufelberger, 4AbNPW
Supervisor: Thomas Biisser

Submitted: January 6, 2014

Management Summary Il

Management Summary

“GuitarBot” is an ambitious project to build a robot which is able to play music on four guitar strings.
The main part consists of the practical work, the development of the robot. The present paper is a
detailed documentation of how the GuitarBot turned from an idea into a working product. It describes
the many hurdles encountered by the mechanical aspects of the GuitarBot, the various pitfalls of the

electronic components and eventually the programming of the microcontroller.

The project was highly instructive and provided experience and insight into the world of engineering

and robotics, sectors in which | can see myself in the future.

Table of Contents 1]

Table of Contents

1 Yo T ot T o 1
1.1 F N[o) i o o Tl o o [Tt APPSR 1
1.2 Motivation and INSPIratioNcccuiiii i e e et e e e e are e e e serta e e e serraeaeeans 1
1.3] A ot AT o] o g 1o 2= oY PR 1
1.4 BLI=T 0 0011 aTe] Fo = PP TR 2
2 L T 1T T 3
2.1 1Y T o o] g o] Fo =Y 2SRRI 3
2.2 (@ g oY Tol=N o)l @o] 0 0] oo g 1T) 43R 3
2.2.1 Fretting the STINGo e et e e e s ae e e e ebte e e e e raee e e anees 3
2.2.2 LINEAI IMIOTION et s ann 4
2.2.3 PICKING the STING c..evviii i e e e e e e s bee e e e sbee e e e s beee e e anes 4
224 LAY UL s 4
2.3 [o) {01 nY/ o)1 o - SO SR OPTPPPPPPRPP 5
2.4 [Ta Y I ad oo [FT ot 4o o WSS 6
3 = o o 7
31 L TS\ el oYl gk o] =T PRSP 7
3.2 [=Yor o) a1 Toll @] s o o Yo Y =T o1 {3 PSPPSR 7
3.2.1 YT o] o LT gD 4 V=T PP PP OPPTPPPPPTTRN 8
3.2.2 YT oY N o] 04 o] 11T USRI 8
3.2.3 01NV 2 Lo - o PP 8
3.24 Y B O T o N 2 (T Vo =T R 9
3.25 YT 0T o] g ool R 9
3.2.6 K] 1 =] o PSSP RRTRRN 9
3.2.7 (01 o 1T ol =T o 4T SR 10
33 oL T U o] o) 1Y 2SR 10
3.3.1 Overvoltage and FIYback DIuuiieeiiiiiceeeeeecee et et 10
4 SOTEWAIE ... ieeeeciiiiiieeteeeeetree e e reeee e s eeensseseenasseseennsseseennssessennssessennsssnsennsssseennsssneennnnnns 12
4.1 Programming the ArdUiNO.........cc.ueiiieiiiie et e e et e e et e e e eeaaaeeeeenaaeee s 12
4.1.1 (] o =TT TR 12
4.2 Controlling the COMPONENTSccccuiiiieeee et et e e e bre e e e sbee e e eabeee e e eanes 12
4.2.1 L] o] o 1= PP P PP PP PP PPPPPPPPPPPPPPPPPRS 13
4.2.2 SBIVOS. .ttt e et e e e s s e et e e s s s n e e e e e s s s nene 13
4.2.3 REIAYS ottt ettt et e et e e e et e e e e et teeeeabtaeeeeartaeeeaartaeeeanaraeeeanns 14
4.2.4 Y] 4T OO PPPPPPPPT 14
4.3 [oY =d T s T (o [T [SRR 14
4.4 Lo I ad oY= 0 ' [P SR 15
4.4.1 (07][] o] 1 4 o Y o TSR 16
4.4.2 [OCT: Yo I 1] o TSP 16
4.4.3 MOV POSTTION L. s 17
444 [PNV T o [T PRSI 18
4.4.5 1] 0]« I T 1 o =P 18
5 70T 4 Uol [T L oo TP 19
5.1 WAt s NEXE? ...eeeiiieie ettt e e e et e e e e e bt e e e e e bt e e e e ebaeeeeebaeeeeeabaeeeeanseeeeeansens 19
2] (=] =] 1oL SRRt v
LIST Of FIGUIES cuueiiieieiiiiieieiteeeettteneeseeanneeteeansesseenssessennssessennssessesnssessennssessennssssesnnsseseennsnessennnnnns Vv

(IR oY Y o1 o o =1V T= 4 T Y 3 T Vil

Introduction 1

1 Introduction

1.1 Aim of the Project

The aim of the project “GuitarBot” is to build a machine, which is capable of playing music. An idea
should be created and realized from scratch. The development process of a product should be experi-

enced. The project is an opportunity to gain insight into the world of engineering, especially robotics.

1.2 Motivation and Inspiration

| have always been fascinated by the development of technology over time. Furthermore, music plays
a crucial role in my everyday life. There’s also the fact that I’'m extremely interested in engineering and
product development. Given these conditions, the GuitarBot is the perfect project, combining my
probable future profession area with a lifetime passion. The outcome should not only be a working

product but also unique experience for life.

Of course, the GuitarBot is not the first project in the world to combine music and technology. “Com-
pressorhead” is a group of humanoid robots which play real instruments. “MechBass” is a machine
similar to the GuitarBot. Nevertheless, the ambition was to build a music robot from scratch, based on

own ideas, not to copy an existing one.

1.3 Structure of the Paper

The whole document is structured like the devel-
opment of the GuitarBot itself. After discussing
some ideas, the final form of the robot emerges
more and more. A prototype has to be built, suit-
able components have to be chosen. With the
mechanics fully assembled comes the part where

the electronics has to be installed. The last chap-

ter consists of software based aspects.

Figure 1: The GuitarBot with the servos in the foreground

The use of technical terms couldn’t be avoided.
Therefore, the next chapter explains a few important terms, also words | invented by myself to de-

scribe certain components. A more extensive list of expressions can be found in the appendix.

Introduction

1.4 Terminology

Fretter

Muter

Picker

Servo motor

Solenoid

Stepper motor

Timing belt

The fretter is the part of the GuitarBot which moves along the linear slide. When
toggled, a solenoid with a metal rod through its shaft pulls the string towards it.

The housing of the fretter also acts as the fret itself (Figure 15).

The muter of the GuitarBot is the servo with rubber foam at the end of its arm.
When the muter lowers, the rubber foam mutes the string, and the tone is stopped

(Figure 2).

The picker of the GuitarBot is the servo with a pick
(guitar plectrum) attached. Up and down move-
ments of the servo cause the pick to play the string

(Figure 2).

Figure 2: Two servos acting as a
picker and a muter

A servo motor (Figure 2), or just servo, is an actua-
tor which allows precise positioning. However, a

servo has a limited rotary range.

In engineering, a solenoid is a device which converts current into linear force.
There’s a metal rod inside a tightly wound coil. Whenever current flows through
the coil, a magnetic field is created and the metal rod is pulled inside the coil (Figure

5).

A stepper motor (Figure 6), or just stepper, is a motor which divides the rotation
into small, consistent steps. By telling the stepper how many steps to take, a precise

rotation can be achieved.

A Timing belt (Figure 3) is a toothed belt

which can be used to transfer a rotation from

one axis onto another. In the GuitarBot, a tim- d‘

ing belt is used to transform the rotation into

a linear movement.) o . .
Figure 3: Timing belt with the joints made

of cable connectors

Hardware 3

2 Hardware

The following chapters deal with the development of the GuitarBot’s hardware. Like humans, robots
also have “intelligence” on one side, and a body on the other side. The important point is that they
work together properly. Therefore, the constructor has to think ahead and adjust the form of the ma-

chine to its intended purpose. Or in other words: Form follows function.

2.1 Morphology

The function of the GuitarBot is to play guitar. If we take a look at the human body playing a guitar, we
can clearly see two parts of the action. There’s one hand plucking the strings and therefore deciding
on the timing of a tone. The second hand moves along the fretboard and presses the strings down to

change the pitch of a tone. This is also called “fretting” the strings.

There are two approaches for a guitar playing ro- |

bot. One is to construct a machine which plays an

actual guitar, like humans do. The other approach

is to abstract the guitar and rebuild it as simple as

possible. Since the real guitar was constructed to

be played by a human, it’s just logical to redesign

the guitar so that it can be easily played by a ma- P

chine. Based on the tasks mentioned above, the

guitar can be reduced to the strings (Figure 4, red) —
] Figure 4: A real guitar compared to the GuitarBot with the
and the frets (Figure 4, green). strings and frets highlighted (picture above, source: taylor-

guitars.com)

2.2 Choice of Components

An important step is the choice of appropriate components. They should have a good price-perfor-

mance ratio.

2.2.1 Fretting the String

When playing a real guitar, the string is fretted by pressing it down be-
tween two frets. Now the string can only vibrate from the fret to the
other end, which results in a higher tone. A fixed fret, which shuttles

along the string is easy to build, but it produces disturbing noises and

damages the string while moving back and forth. The solution is a sole-

Figure 5: A solenoid is used to fret

noid which pulls the string towards itself when triggered. The solenoid ;
the string

is mounted in a self-made housing which also acts as the fret.

Hardware 4

2.2.2 Linear Motion

Somehow, the linear movement of the fretting hand has to be imitated by
the GuitarBot. There are linear motors, but they are very expensive and un-
suitable. So the rotation of a usual motor has to be transferred into a linear
motion. The best solution appears to be a timing belt. Because ordinary DC
motors can’t be driven precisely (which is essential to position the fretter),

the solution is either a servo motor or a stepper motor. The disadvantage of

the servo: It can’t rotate indefinitely. On the other side, stepper motors are

Figure 6: A stepper motor
much more complex to control. Never- ith 2 pulley
theless, the stepper motor is chosen because the rotary limitation

of the servo is a huge drawback.

To stay on a straight track, the fretter moves back and forth on a

Figure 7: A segment of a linear slide
'8u & : ' linear slide driven by the mentioned timing belt.

2.2.3 Picking the String
In order to achieve an efficient way of picking, the string has to be played in downstrokes (the pick
makes a downward movement) and upstrokes (the pick makes an upward movement). The problem
with solenoids is, that they only provide force in one direction, say in the downstroke direction. That
means that the force for the upstroke has to be caused by another part, e.g. a spring, which would
result in a greater effort in design. A satisfying solution seems to be a servo motor. Its limited range,
in our case about 180°, isn’t a problem here since the

movement of the pick isn’t a full rotation. Another servo

with foam rubber at the end of its arm is attached to

mute the tone.

There would also be the opportunity of attaching several

picks to a stepper motor, as it is done at the MechBass.

However, that would be a more expensive solution be- Figure 8: The picking mechanism at the MechBass

. . . . (source: youtube.com)
sides the mentioned complexity in controlling a stepper.

2.2.4 Layout

Once the components are chosen, there are many different ways to arrange them. For most of the
parts there’s the question whether the string is located above or beside the whole mechanics. Above
would mean that the individual entities get quite narrow but high. However, the option with the string

next to the mechanics is easier to build since the construction is lower. One of the remaining issues,

Hardware 5

which is worth mentioning, is the position of the stepper motor. Because it’s easier to have the pulleys
installed horizontally (the axis is horizontal), the stepper motor is also mounted horizontally. Still, there
are two options for its location. Either the motor is on the same layer as the rest of the mechanics, or
it’s located on a second, lower level. A second level comes in
handy when we get to the electronics and its installation.

Here’s where thinking ahead pays off!

Another aspect of thinking ahead is that the dimensions of the

GuitarBot are chosen so that the whole machine can be put in

Figure 9: The GuitarBot in a box

a standard-box (width: 36cm, length: 56cm).

2.3 Prototyping

A prototype is usually built to test whether the concepts made on paper work in reality. The way to
the final product is an iteration of improvements and new prototypes. The very first GuitarBot proto-
type was built even before the majority of the ideas above have been developed. It only consisted of
a primitive linear slide (a part of a PVC tube around a
wooden rod), a fixed fret, and a string tensioned over the
construction. Of course the prototype wasn’t even able to

play a tone because there weren’t any motors or other

electronics attached. It was just useful to have an image of

o the whole concept and it was easier to get to the later
Figure 10: The first prototype's linear slide with

the string highlighted in red ideas.

The second, more serious GuitarBot prototype had almost all the compo-
nents that the final GuitarBot has as well. It consisted of only one string
and the according mechanics. It revealed that a limit switch is necessary
to calibrate the stepper. The infrared sensor prevailed against a mechan-
ical switch, because it is non-contact and works well at short range. An

additional pulley with a spring (to tension the timing belt) turned out to

be unnecessary, if the timing belt has the

Figure 11: The additional pulley
of the second prototype

fretter also needed a revision and got, among other things, a guide for

. perfect length. Of course the self-designed

the small rod which frets the string. There were also other, less significant

changes to the final GuitarBot which are not mentioned here.

Figure 12: The first fretter

Hardware 6

2.4 Final Production

In order to assemble the final robot as trouble-free as possible,

some preparation is to be done. All the components are digitally

around on the sketch to get to an optimal layout. An important part

drawn using Microsoft Visio. Now, the objects can be moved & j"J
®

of the layout are the boreholes. Once finished, the layout is printed

at scale 1:1. With this blueprint, the boreholes can be mapped onto

M
b;

the board and are drilled in no time. L [©

Figure 13: A sector of the layout (the
whole layout is in the appendix)

The Handcraft Challenge

It seems that the rest is just putting together the parts. On one side it’s true. On the other side, it’s
not that easy since the GuitarBot doesn’t base on an assembly kit such as LEGO Technics or Mak-
erBeam. Some parts are even self-made, such as the fretter housing (Figure 14, Figure 15). It's an
elaborate object which isn’t made using a CNC milling machine, but with tinsnips and files. A lot of

other tools are used, e.g. a plunge saw, an awl, a rasp, or a soldering iron.

Figure 14: An aluminum sheet cut and bent... Figure 15: ...turns into the housing of the fretter

Electronics 7

3 Electronics

The Electronics is the part of the robot which controls the body. It’s the thing between hardware and
software which makes the two of them work together. Of course all the motors and sensors mentioned
above are also electronic parts, but in this chapter we will talk about the parts that are controlling the

others.

3.1 The Microcontroller

As already said, a robot needs a brain, a part on which the software is running and which controls the
other electronic components. There’s a microcontroller in almost every device nowadays. For the Gui-

tarBot, the microcontroller has to be effective but also easy to handle.

After extensive research and a conversation
with Prof. Reto Bonderer (Embedded Software
Engineering at the HSR), the microcontroller
board “Arduino” turns out to be suitable for

the GuitarBot. An Arduino consists of a micro-

controller with an open-source hardware
board built around it. Most of the microcon- Figure 16: Arduino Mega (source: arduino.cc)

troller’s pins are exposed on the Arduino, which means connecting it to other components is very easy.
The pins are divided into digital and analog pins. Digital pins, whether input or output, can only distin-
guish between on and off. Analog pins, on the other hand, have a resolution of 10 bits, which means
they can have 1024 different values. What that means exactly and how we can use it should become
clear when we come to programming the Arduino (chapter 4.1). Probably the best thing about Arduino
is, that it’s completely open source. Meaning that all the software and plans for the modules are pub-
lished under a free license. As a result, there is a huge amount of additional boards available, some of

which will be mentioned in the following chapters.

3.2 Electronic Components .
Arduino
Besides the Arduino, there are a lot of other elec- |
tronic boards inside the GuitarBot. The Arduino can . | I - | !
elay Stepper Driver Servo Sensor
. i . Module x4 Controller Dock
be seen as the highest controlling entity. It controls [I [|
. . Solenoid Stepper Servo IR-Sensor
the other boards, which control specific components x4 x4 x8 x4

themselves. Figure 17: Electronic hierarchy

Electronics 8

3.2.1 Stepper Driver

Stepper drivers are designed to undertake the complex process of controlling a stepper motor, while
the driver itself can be easily controlled. There are masses of different drivers, all with their pros and
cons. The “Big EasyDriver” by Sparkfun is a suitable driver for the
GuitarBot’s stepper motors. It is controlled over only two wires,
“Step” and “Direction”. As expected by the name, the driver causes
a step every time it receives a signal on “Step”. “Direction” is used

to set the direction in which the stepper motor is supposed to turn.

Therefore, the four stepper motors can be controlled over only eight

Figure 18: Big EasyDriver by Sparkfun digital pins on the Arduino.

3.2.2 Servo Controller

When all the eight servos were controlled individually, they
would occupy eight pins on the Arduino. With the “16-Channel
PWM/Servo Driver” by Adafruit, we only need two pins to con-
trol 16 servos. The driver uses the I2C bus, which transfers data
serially over two special pins on the Arduino. The servos can
now be controlled by just sending commands to the servo

driver. Since every device which uses the I>C bus has its own

address, we could control multiple boards with the same two

o 8

pins. Therefore, we could chain up 62 of these servo drivers to Figure 19: The servo controller already
hooked up to the GuitarBot

control up to 992 servos at a time with only two pins (Earl,

2013).

3.2.3 RelayBoard

The solenoids require 12 volts, whereas the Arduino can only
provide 5 volts. Hence we need a separate power supply for
the solenoids. The Arduino still has to be able to control the

solenoids (i.e. turn them on and off). A relay is an electrical

switch, toggled by a low-power signal. Because it’s isolated, it B e
can be used to turn a high-power circuit on and off. The “4- m&‘g

Channel Relay Module” by Sainsmart works well with Arduino

and is a suitable choice. Figure 20: Relay module with additional pins

Electronics 9

3.2.4 SD Card Reader

In most cases, an Arduino uses an SD Card to log data, which it has col-
lected by reading from sensors. Why the GuitarBot needs an SD Card,
will be explained in chapter 4.3. There are several different card readers

available to work with the Arduino. The one used in the GuitarBot com-

municates with the Arduino over the SPI bus, a serial bus similar to the

12C bus. Figure 21: SD card reader

3.2.5 Sensor Dock

The self-made sensor dock isn’t a “real electronic” board, it is just a
board where some pins are merged. The infrared sensor contains two
separate parts. An infrared LED, and a phototransistor. Therefore, it has
four pins. One for the 5V supply, one to read the sensor’s value, and two

ground pins (Figure 22, above). Since four of these sensors are used,

there are 16 wires. To reduce the number of wires going to the Arduino,
all the ground pins and the 5V pins are merged (Figure 22, below). Now
there are 16 wires going onto the sensor dock, and just 6 coming out of

it. Because the sensor can’t just be hooked up to the Arduino and the

power supply (ameyer, 2011), the respective circuit has to be quadru-

i, W

pled and soldered onto the board. Figure 22: Same pins highlighted

in the same color (picture above,
source: bildr.org)

3.2.6 Shield

Talking about Arduino, a shield is an electronic board with the pins arranged like the pins of the Ar-
duino. Thus, a shield can just be plugged on top of the Arduino. After reading about all the electronic
parts attached, one can imagine that there are a lot of
wires to be connected to the Arduino. With the self-
made shield, the Arduino can be easily disconnected
from the GuitarBot. There are several connectors on
the shield where the wires can be plugged into. From
there, they are connected to their according pins. The

shield is also the place where the power from the sup-

Figure 23: The shield plugged into the Arduino with the ply (highlighted in yellow) is distributed to the specific
components connected and highlighted

parts (highlighted in blue).

Electronics

10

3.2.7 Other Parts

The stepper driver doesn’t only have the two mentioned pins “Step” and
“Direction”. In fact, there are seven wires coming from each stepper
driver, i.e. 28 altogether (Figure 24, highlighted in red). To minimize the
number of wires going to the Arduino (Figure 23, highlighted in red), a mo-
tor dock is constructed where the wires are plugged in. Power supply pins

are merged, and pins which can be used to set the stepping type are con-

nected to a switch on the board. Thereby, the number of wires going to

Figure 24: Inputs highlighted in
the Arduino (Figure 24, highlighted in green) can be reduced from 28 to 10. red, outputs in green

Another dock is located near the relay board, the servo driver, and
the sensor dock. There, the wires of these boards meet. Again, pins
for the power supply are merged (Figure 25, highlighted in blue)
and the wires going to the Arduino (Figure 23, highlighted in green)

are reduced from 20 to 14.

S 9D VIV
s e v e s s seesee e
))JJJJ))JJJ)J)

Figure 25: Inputs for the sensor dock On some photographs, one can also see a liquid-crystal display and
(red), relay module (pink), and servo
controller (green) and output to the Ar-
duino (yellow)

a joystick. These parts were used for test programs but are not re-

quired for the final program.

3.3 Power Supply

To supply the GuitarBot with power, a power adapter which provides 5 and 12 volts is used. The 5V

and 12V wire, as well as the ground wires, go onto the shield where the power is distributed.

3.3.1 Overvoltage and Flyback Diode

Switching off the solenoids cause an interference which severely disturbs the other components and
crashes the Arduino. This interference can be reduced using a “flyback diode”. This measure protects
the Arduino. Unfortunately, there is still an issue with the solenoids. Whenever a solenoid is turned
off, the stepper motors move one step, because they are connected to the same 12V supply. Maybe,
the interference could be removed by another electronic component (e.g. an RC-filter, a resistor-ca-
pacitor circuit). But the easiest solution is to use an individual 12V power supply for the solenoids.

Herewith, the occurred problems with the solenoids are solved.

The reason why the flyback diode works is rather tricky and not important throughout the rest of the

paper. Nevertheless, here’s a short explanation:

Electronics 11

Turning off the power supply of an inductor isn’t as harmless as it might Eéeclrical
urrent;

seem. When an inductor (like a solenoid) is provided with voltage, a mag-
netic field is created. According to physics, moving electrons create a mag-
netic field. Alternatively, a magnetic field changing its strength or polarity
causes electrons to move. Let us apply that to the solenoid. If the solenoid
is supplied with voltage, a magnetic field is created. If we now, all of a sud-
den, turn off the voltage, the magnetic field collapses. The solenoid now acts
as a generator, giving the electrons some extra push. A voltage peak occurs. Figure 26: Electron flux

when the solenoid is pro-

Although the power supply for the solenoid is just 12 volts, this voltage peak vided with current (source:
douglaskrantz.com)

can be hundreds of volts. The quicker the shut-off, the greater the peak. This

peak causes the Arduino to crash and reboot.

oA
2 B
- Current

Flow

A so called flyback diode seems to be the solution to the problem. A
regular diode is attached to the circuit, so that it’s not conducting when

the solenoid is turned on (Figure 26). As soon as the power supply is

turned off, the flyback diode shunts the voltage back into the solenoid

Figure 27: Electron flux shortly af-
ter turning off the power supply
(source: douglaskrantz.com)

(Figure 27). As a result, the magnetic field collapses much slower and

the generated voltage will be lower (Krantz, n.d.).

Software 12

4 Software

The only thing missing now, is the software. In this chapter, we will get to know the program which is
running on the GuitarBot. The goal is to figure out what the program does, without knowing the spe-

cific coding language.

4.1 Programming the Arduino

The Arduino provides its own IDE (integrated develop- [wvoid setwpi(y ¢
ment environment). The code, in which the Arduino is pinMode (33, OUTPUT) : // pin 33 -» output
programmed is simplified C++. But it’s not as complicated |:

as it sounds. There are a lot of libraries that make coding | woid loop() {

easier. A program on the Arduino needs two essential digitalWrite(33, LOW; // turn on relay
delay (5007 ; f¢ walt .5 sec

parts. There is the “setup()”-part, which is executed once digitalWrite(33, HIGH): // turn off relay
delay (500717 Jf wait .5 sec

the program starts, and there’s the “loop()”-part, which \

is looped all the time until the program is interrupted Figure 28: A simple Arduino program which turns a
(Figure 28). These two parts are important for the under- relay connected to pin 33 on and off

standing of the program itself. We already know that the Arduino has two kinds of pins. Digital and
analog pins. Every pin can be used as an input or an output. This means that we can either “read” from
a pin or “write” to a pin. If we read from a digital pin using “digitalRead()”, the returned value is either
“HIGH” or “LOW". Accordingly, when we write to a digital pin using “digitalWrite()”, it provides 5V if
we write a “HIGH” value, or OV if we write a “LOW” value. The analog pins have a resolution of 10-bit,
which means if we read from an analog pin using “analogRead()”, the input between 0V and 5V is
mapped to a value from 0 to 1023. If we write to an analog pin using “analogWrite()”, it can simulate

voltages between OV and 5V, using pulse-width modulation (PWM, which we won’t discuss here any

further).

4.1.1 Libraries

As already mentioned, there are a lot of libraries available for everything one could imagine. If we take
the example of the servo driver, which uses the 12C-Bus, it would require a lot of complicated code to
send a single command to the driver. With the corresponding library “Adafruit_ PWMServoDriver”,

moving a servo to a certain position can be achieved in one line of code.

4.2 Controlling the Components

Already during the process of prototyping, first programs were written to test the components and to

get used to how to control them.

Software

4.2.1 Stepper
To control the stepper motors, the li-

brary “AccelStepper” by Mike McCauley

13

woid =zetup ()

{

stepperl, setlaxipeed (naxipeed) -
stepperl,uwoveTo (targetPos) ;
gtepperl, setipecd|(stepipead) ;

/4 maximum speed set to 1000 steps per second
J/ wmove to position 300 (300 steps from 0)
// set speed to "steplipeed”

is used. The library is compatible with |:

. v0id loop ()
most drivers and has some great fea- |;
44 1f at target position, wait half a second and go to -(target position)
1f (stepperl.distanceTolbo() == 0){
tures ACCGIStepper can nOt Only move stepperl.uoveTo(-stepperl. currentPosicioni))
stepperl.setipeed(stepipeed) s
delay(500);
+

stepperl.runSpesdToPosition(): // make steps at defined speed

multiple stepper motors at a constant

speed, but it can also implement acceler- |;

ations. Furthermore, it has a position Figure 29: Example of driving a stepper using AccelStepper
. ’

tracker to know at which “position” the stepper is. An essential feature of the AccelStepper library is,
that it’s non-blocking. When we tell the stepper motor to move to a certain position, the program
doesn’t wait until the position is reached. To move the stepper, we just have to update the target
position of the stepper object. Every time we call “stepper.runSpeedToPosition()”, the motor moves
one step, if a step is due. In order to obtain a fluent rotation, “stepper.runSpeedToPosition()” must be

called as frequently as possible (Figure 29).

4.2.2 Servos

The servo driver uses its own library called “Adafruit PWMServoDriver”. We create a driver object, on
which we can execute the commands to control the servos. The driver has 16 ports which can be con-
trolled over the same object. A servo motor expects a PWM signal. Depending on the pulse width, the
servo then moves to the corresponding position. In other words, we can’t tell the servo to “move to
position 90°”, but we have to send a “HIGH” signal for 1.6ms (pulse width) instead.

period

HIGH

LOW

—_—
pulse width

Figure 30: Concept of pulse-width modulation

Analog servos run at about 50 Hz updates, which means the PWM period measures 20 milliseconds
(Salt, n.d.). With the mentioned library, a servo’s position is set with “pwm.setPWM(int port, int on,
int off)”, where “port” is the port on the driver to be updated. “On” (a value between 0 and 4095), is
the time in the period when the signal is turned on. “Off” (a value between 0 and 4095), is the time in
the period when the signal is turned off again. The time during which the signal is “HIGH” is the pulse

width (Figure 30).

Software 14

Our servos range from a pulse width of approximately 0.6ms (on — 0, off — 150), which is all the way to
one side, to 2.6ms (on — 0, off — 630), which is all the way to the other side. This results in a rotation

range of about 180°.

4.2.3 Relays

Controlling the relay board is really simple. Each of the four relays has a separate pin which is con-
nected to a digital pin on the Arduino. Now if for example “digitalWrite(33, LOW)” is executed, the
relay connected to pin 33 is turned on. Correspondingly, if “digitalWrite(33, HIGH)” is executed, the

relay on pin 33 is turned off (Figure 28).

4.2.4 Sensor

With the function “analogRead(int port)”, we can easily get the woid loop() {

sensor’s value (Figure 31). A value between 0 and 1023 is re-
turned. The closer the object is to the sensor, the lower the wal = analogBRead (A3)

value. Because the sensor is only suitable at short range, there

}

) ,) Figure 31: Reading the value from the sen-
ject gets 1mm closer to the sensor. That’s very convenient, be- sor on port "A3" and storing it to "val"

is a remarkable drop in the returned value even when the ob-

cause the stepper can be calibrated highly accurate. Under normal circumstances the sensor returns a
value below 300, when the fretter is at the end of the linear slide. Therefore, 300 is an appropriate
limit value. Usually, an infrared sensor isn’t influenced by visible light. Nevertheless, extreme bright-

ness can cause minor changes in the returned values.

4.3 Program Ildeas

The whole concept of the program is to play a preset (i.e. hard coded) song with the GuitarBot. First

thoughts revealed that the program is just some functions put together, namely “move”, “play”, and

“stop”. Each of the four strings should be controlled individually.

Unfortunately, the Arduino is not multi-threading, i.e. it can’t run multiple functions simultaneously.
There’s no problem with that until it comes to moving the stepper motors. A lot of stepper libraries
have blocking functions, which is unsuitable when two steppers should run at the same time. Luckily,

the AccelStepper library is non-blocking as mentioned above.

The unsatisfactory thing about the concept of a preset song is, that a program can only play that exact
song. If another song wants to be played, a new program has to be written. So the song should not be
hard coded. The solution is to store the commands of the song in a CSV-file and write a program which

executes these commands one after another.

Software 15

One command consists of three or four parts:

Time; String; Command; Steps

For example:

2000; 2; m; 370 // move the fretter on the 3™ string to position 370

2500; 2; p; // after 500 milliseconds, play a tone on the 3™ string

2980; 2; s; // stop the tone on the 3™ string after 480 milliseconds

The first part is the time (in milliseconds) at which the command has to be executed. Followed by the
string (number from 0 to 3) on which the command has to be executed. Then comes the command

” "

), i.e. “move”, “play” or “stop”. If the command is “m”, there’s another part

nou n ”s”

itself (“m”, “p”, or

containing the target position.

Another option is to store these values in four different arrays. However, arrays can get quite incon-
venient, since they have to be edited in the program itself. Also, arrays with a lot of values get very
unclear. In comparison, values in a CSV file can be easily created and edited using Excel, and every
command has its own line (as indicated above). The CSV file is saved on an SD card which is later read
by the Arduino. The downside of this option is that reading out a file from an SD card with the Arduino
is not as simple as reading values from an array. But after all, the advantages outweigh the disad-

vantages.

4.4 Final Program

First, some preferences are set. Limit values for the sensors, positions for the servos, and the speed of
the stepper motors, just to mention a few. In the setup of the program, all the servos are moved to
their start position, the stepper motors are calibrated, and the file “guitarbot.csv” on the SD card is
opened. Before the loop begins, the first line of the CSV file is read and the values of the line are stored

into individual variables. The loop itself consists of a very simple procedure. If the timer reaches the

Software 16

value of “myTime”, the according command is executed and a new line is read. Whether or not a com-
mand was executed, “runSpeedToPosition” is called 1000 times for each stepper motor, in order to

achieve a fluent movement.

execute . «run» x1000 on
—>read new line — .
command each string

time to ex.
command?

set up and
calibrate robot

— read first line

Figure 32: Flowchart of the program running on the GuitarBot

4.4.1 Calibration

When the GuitarBot is turned on, the fretters can be at any position on the linear slide. Because the
Arduino itself doesn’t know where they are, the stepper motors have to be calibrated. This means that
every fretter moves toward the beginning of its linear slide, until the IR-sensor reports that the end is

reached (Figure 33). The position tracker is then set to zero. From now on, the Arduino always knows

5 CALIERATE K where the fretter is situated, thanks

/¢4 move the fretter close to the sensor and set this azs 0 position
woid calibrate(int _string) {

to the position tracker of the Accel-

stepper[_string].setipeed(vitepper); /¢ =2et speed for the stepper
irv¥alue[_string] = analogRead({IR[_string]):; // put the sensor value into the array
Stepper library (except if the timing

while{irWalue[_string] > irLimit[_string]}{ // run t£ill the beginning of the slide is reached

irValue[=strin = analogRead (IR[_ strin 77/ read from the sensor all the time . .

stepperEZstrlnE%.ru.nSpEeg(]; R o /4 run towards the beginning of the slide belt Sllps; I-e- the Stepper makes a
i
stepper[_stringl.stopi); A4 stop if reached

step but the fretter doesn’t move,

stepper[_string].setCurrentPosition(0d); /4 set current position as 0

! which fortunately doesn’t happen a

Figure 33: Calibration of the stepper lot)

4.4.2 Readaline

In order to understand the reading of a line, some things have to be clarified. First, the SD card library
only reads one character at a time when reading from a file. Furthermore, the CSV file is plain ASCII
text. The structure of the CSV file is also important (see chapter 4.3). For a clearer understanding,

there’s a flowchart at the end of this chapter (Figure 34).

To get the first part of the line (the time), every character until the first semicolon is stored to

“myTime”, using the following procedure:

myTime = myTime X 10 + (c — 48)

“c” is the currently read character. “0” is the 48™ character in the ASCII table. Therefore, “0” converted
to an integer would be “48” (hence “c - 48”). Since the numbers are treated as single characters, the
previous value of “myTime” has to be multiplied by 10 before the new number is added. As an exam-
ple: The number is “23”. The first number stored to “myTime” is “2”. The second number to be stored

is “3”. If we multiply “myTime” by 10 before the addition, we get to the desired value of “23".

Software 17

After reading the semicolon, the second part of the line (a number) is stored to the variable “myString”.
This number indicates on which string the command has to be executed. “0” is the first string, “3” is

the fourth string. Here, too, we have to subtract 48 from the character in order to get the right value.

The next character should be a semicolon again, followed by the command. There are three options:
“m” for move, “p” for play, or “s” for stop. Since the data-type of the variable “myCommand” is “char-

acter”, our command can be stored as it is (no subtracting, like with the numbers).

If the command is “m”, another number (the new target position) is expected after the semicolon. The
number is stored to “mySteps” with the same procedure like the time has been stored to “myTime”.
The very last characters on each line are “\r” — carriage return, and “\n” — line feed (both not visible
when viewing the file in an editor), which indicate the end of the line, and therefore the end of the

function “readLine()"”.

We now have the individual values from the line in the variables “myTime”, “myString”, “my-

Command”, and “mySteps”.

store to store to store to store to
myTime myString myCommand mySteps
No T T No
read next read next read next
read next d o Yes | read next read next read next - a5~
i —— is character *;'? " character || character | character | character || character is character "\r'? character
(should be ;") (should be %}’) (should be \n’)

Figure 34: Simplified flowchart to the function "readLine()"

4.4.3 Move Position

The function “movePosition(int _string, |~ HovE)
/# change the target position of the stepper to the position in the argquument
. . ” woid movePosition(int _string, int _pos)
int _pOSItIOﬂ) requests two arguments. |,
if(!stringReady[_stringl) { /4 force stop, if not ready to move
stopTone (_string);

The first one is the string on which the | |

iffabs{_pos) > abs(max3teps)) { A7 1f _pos isn't within range, cancel the method
function is applied to, and the second -
A L. stepper(_string]l.moweTo|_pos); /4 Set target position
one Is the pos|t|0n to Wher‘e the fretter atepper[_stringl.setipeed(vitepper): /¢ aet apeed [has to be set after moveTo():

)
has to be moved. If the fretter is not Figure 35: The function executed when "myCommand" is "m"

ready to move (a tone is played on that string), a forced “stopTone(int _string)” is called. When the
fretter is ready to move and “_pos” is within a certain limit (maxSteps), the target position of the ac-
cording stepper motor is updated to the new position. The actual movements of the stepper motors
are caused by the call of “stepper]i].runSpeedToPosition()”, for i from 0 to 3, at the end of each loop

(Figure 32).

Software 18

4.44 PlayaTone
One of the most important functions is “playTone(int _string)”. The number delivered in the argument
tells the function, which string has to be plucked. We get the number of the servo-ports on the con-

troller by the following two functions:

_PICKER = _string X 2

_MUTER = string X2+ 1

This means that for string number 1 (the |~ FLAY &

/4 play the tone on the string in the argqument
d wvold playTone(int _string)

n . . .

2" string), the pickeris on port 2 and the |«
int _PICKER = _string # 2; ## get the picker port number from the string mmber
int _MUTER = _string * 2 + 1: #¢ get the muter port humber from the string number

muter is on port 3. After the fretter is

digitallrite (RELAY[string], LOW): ff trigger the fretter
. . . stringReady[_string] = 0; J/ string is not ready to move position
triggered, the muter is lifted. If the pom, setPUN(_MUTER, 0, servollp[_MUTER]) ; /¢ Lift the muter
. . . . if(servoPos[_PICKER]) J# if picker is in position "domm”
picker is below the string, an upstroke is {
pum. setPUM|{_PICKER, 0, serwvolp[PICKER]]: JF upstroke
. . . . servoPos[PFICKER] = 0O; ff update servo position
implemented, if the picker is above the)
elze /¢ if picker is in position "up”™
. . {
string, the function causes a downstroke . SECPU(_FICER, 0, servopowm(PICKER]): // dvmstrone
servoPos[_PICKER] = 1: JF updare serwo position

(Figure 36). .

Figure 36: Code snippet showing the function "playTone(int _string)"

44,5 StopaTone

Stopping a tone is the easiest of all functions. When the function is called with the string number in
the argument, the muter lowers and the fretter is released. The fretter is now ready to change position
again (Figure 37). “stopTone(int _string)” uses the same function to get to the muter-port from the

string number as “playTone(int _string)”.

i STOF 4
/¢ stop the tone on the string in the arqument
woid stopTone(int _string)
{
int. _MUTER = _string * 2 + 1: A4 et the muter port number from the string number

pum. setPUM|{_MUTER, 0, servoDown[MUTER]) : /7 lower the muter
digitalWrite (RELAY[_ string], HIGH): // release the fretter
stringReady[_string] = 1: A/ string ready to mowve position

'

Figure 37: "stopTone(_string)", used to mute a played tone

Conclusion 19

5 Conclusion

The GuitarBot was a great project be-
cause it gave an insight into the proce-
dure of developing a product. It’s im-
pressive how labor-intensive and time-
consuming it is to realize an idea from
scratch. The production of an object
runs through a lot of phases and alt-

hough the way to the final product

seems obvious in the end, there’s a lot

Figure 38: The GuitarBot from another perspective

of try and error involved in the origina-
tion process. Furthermore, a lot of issues are encountered during the production which weren’t taken
into consideration in the planning (e.g. the interference of the solenoids, see chapter 3.3.1). Of course
the creation of a machine in general is only possible if certain resources are available. For example
various components to choose from (see chapter 2.2), or specific tools to assemble the mechanics (see

chapter 2.4), just to mention a few.

Although the GuitarBot was a lot of work, it was highly instructive and a lot of experience could be

gained.

5.1 What’s next?

The GuitarBot in its present state is working as intended. But of course, it can be improved further.
There are several things that can be added to extend the GuitarBot even more. For example a program
which converts a MIDI file into a GuitarBot-compatible CSV file, or the amplification of the tone by a

special pickup system. But that would certainly go beyond the scope of this thesis.

References \Y

References

ameyer. (2011, March 8). bildr » Are we getting close? Proximity Sensors + Arduino. Retrieved from

bildr.org: www.bildr.org/2011/03/various-proximity-sensors-arduino/

Arduino LLC. (2012). Arduino Projects Book. Turin.

Arduino LLC. (n.d.). Arduino - Reference. Retrieved from arduino.cc:

www.arduino.cc/en/Reference/HomePage

Bonderer, R. (2013, June 14). Diskussion liber Robotikplattformen. (F. Schaufelberger, Interviewer)

Earl, B. (2013, June 20). Overview | Adafruit 16-Channel Servo Driver with Arduino | Adafruit Learning
System. Retrieved from learn.adafruit.com: learn.adafruit.com/16-channel-pwm-servo-

driver/overview

Krantz, D. (n.d.). Flyback Diode. Retrieved from douglaskrantz.com:

www.douglaskrantz.com/Flyback_Diode.html

McVay, J. (2012, November 21). MechBass - Hysteria - YouTube. Retrieved from youtube.com:

www.youtube.com/watch?v=5UYMnzXQEtw

Roberts, D. (2011). Making Things Move. Sebastopol: O'Reilly.

Salt, J. (n.d.). Understanding RC Servos — Digital, Analog, Coreless, Brushless. Retrieved from

rchelicopterfun.com: www.rchelicopterfun.com/rc-servos.html

Taylor Guitars. (n.d.). 510ce | Taylor Guitars. Retrieved from taylorguitars.com:

www.taylorguitars.com/guitars/acoustic/510ce

List of Figures Vv

List of Figures

Figure 1: The GuitarBot with the servos in the foreground..........cccoccviiiiiii i 1
Figure 2: Two servos acting as a picker and @ MULETcccveii e 2
Figure 3: Timing belt with the joints made of cable conNNeCtors........ccceeeviiiiiiciii e, 2

Figure 4: A real guitar compared to the GuitarBot with the strings and frets highlighted (picture above,

oYU ol - 1V, Lo T ¢ ={ U =T fole] o) ISR 3
Figure 5: A solenoid is used to fret the STIiNGcooccviii i 3
Figure 6: A stepper motor With @ PUIIEYooi i e e 4
Figure 7: A segment of @ lINEAI SIAEciiiiiiiii i e e e e e 4
Figure 8: The picking mechanism at the MechBass (source: youtube.com).........ccceevveeriieeevieescreeennen. 4
Figure 9: The GUItarBot iN @ DOX ...ccccccuiieiieiiie e e e e ree e e e bee e e e sanes 5
Figure 10: The first prototype's linear slide with the string highlighted inredcccccoeeieiiiiiennnnee. 5
Figure 11: The additional pulley of the second pPrototype.....cccccveviieiiiiiiciiee e 5
FIgUIre 12: The first fretler. e e e e e e e s bae e e e sbee e e earees 5
Figure 13: A sector of the layout (the whole layout is in the appendixX).......ccccecveieeiciiieecciee e, 6
Figure 14: An aluminum sheet cut and DENt..........cooiiiii i e e 6
Figure 15: ...turns into the housing of the fretter........cco e 6
Figure 16: Arduino Mega (SOUICe: ardUiNO.CC).....uuiiieiiiieeieiieeeeeiiee e eetee e e eite e e e evte e e e e bae e e e e bae e e e eabeeeeeares 7
Figure 17: Electronic hiErarChy.........oei ettt e e e e e bae e e e e bae e e e e bee e e e ennees 7
Figure 18: Big EasyDriver by SParkfUn........c..ciioiiii ittt ettt e e e rae e e e a e e 8
Figure 19: The servo controller already hooked up to the GUItarBot........cccceeecvieieeeciieiececiee e 8
Figure 20: Relay module with additional PiNS........ccocciiiiiciiiec e 8
U A Y D o= Yo I T 1o [T o PRSPPI 9
Figure 22: Same pins highlighted in the same color (picture above, source: bildr.org)c.ccccvevuenen. 9
Figure 23: The shield plugged into the Arduino with the components connected and highlighted 9
Figure 24: Inputs highlighted in red, OUtPULS iN BreeN......ccuviii i 10

Figure 25: Inputs for the sensor dock (red), relay module (pink), and servo controller (green) and output
10 The ArdUINO (YEIIOW) ..eeeieeieeeee ettt ettt e e et e et e e tb e e e beeesabeeeabaeesaeesareeenseens 10
Figure 26: Electron flux when the solenoid is provided with current (source: douglaskrantz.com).... 11
Figure 27: Electron flux shortly after turning off the power supply (source: douglaskrantz.com)....... 11
Figure 28: A simple Arduino program which turns a relay connected to pin 33 on and off................. 12
Figure 29: Example of driving a stepper Using ACCEISTEPPENuviieiecieee ettt e eeree e 13
Figure 30: Concept of pulse-width Modulationcooeciiii e 13
Figure 31: Reading the value from the sensor on port "A3" and storing it to "val"cccoeeeeciieenns 14

Figure 32

: Flowchart of the program running on the GuitarBot.........cccccvveeiiciiee e 16

file:///C:/Users/Frank.EFI-FRANKS/Documents/MA/Documents/MA_Bild.docx%23_Toc376127042
file:///C:/Users/Frank.EFI-FRANKS/Documents/MA/Documents/MA_Bild.docx%23_Toc376127043
file:///C:/Users/Frank.EFI-FRANKS/Documents/MA/Documents/MA_Bild.docx%23_Toc376127044
file:///C:/Users/Frank.EFI-FRANKS/Documents/MA/Documents/MA_Bild.docx%23_Toc376127045
file:///C:/Users/Frank.EFI-FRANKS/Documents/MA/Documents/MA_Bild.docx%23_Toc376127045
file:///C:/Users/Frank.EFI-FRANKS/Documents/MA/Documents/MA_Bild.docx%23_Toc376127046
file:///C:/Users/Frank.EFI-FRANKS/Documents/MA/Documents/MA_Bild.docx%23_Toc376127047
file:///C:/Users/Frank.EFI-FRANKS/Documents/MA/Documents/MA_Bild.docx%23_Toc376127048
file:///C:/Users/Frank.EFI-FRANKS/Documents/MA/Documents/MA_Bild.docx%23_Toc376127049
file:///C:/Users/Frank.EFI-FRANKS/Documents/MA/Documents/MA_Bild.docx%23_Toc376127050
file:///C:/Users/Frank.EFI-FRANKS/Documents/MA/Documents/MA_Bild.docx%23_Toc376127051
file:///C:/Users/Frank.EFI-FRANKS/Documents/MA/Documents/MA_Bild.docx%23_Toc376127052
file:///C:/Users/Frank.EFI-FRANKS/Documents/MA/Documents/MA_Bild.docx%23_Toc376127053
file:///C:/Users/Frank.EFI-FRANKS/Documents/MA/Documents/MA_Bild.docx%23_Toc376127054
file:///C:/Users/Frank.EFI-FRANKS/Documents/MA/Documents/MA_Bild.docx%23_Toc376127055
file:///C:/Users/Frank.EFI-FRANKS/Documents/MA/Documents/MA_Bild.docx%23_Toc376127056
file:///C:/Users/Frank.EFI-FRANKS/Documents/MA/Documents/MA_Bild.docx%23_Toc376127057
file:///C:/Users/Frank.EFI-FRANKS/Documents/MA/Documents/MA_Bild.docx%23_Toc376127058
file:///C:/Users/Frank.EFI-FRANKS/Documents/MA/Documents/MA_Bild.docx%23_Toc376127059
file:///C:/Users/Frank.EFI-FRANKS/Documents/MA/Documents/MA_Bild.docx%23_Toc376127060
file:///C:/Users/Frank.EFI-FRANKS/Documents/MA/Documents/MA_Bild.docx%23_Toc376127061
file:///C:/Users/Frank.EFI-FRANKS/Documents/MA/Documents/MA_Bild.docx%23_Toc376127062
file:///C:/Users/Frank.EFI-FRANKS/Documents/MA/Documents/MA_Bild.docx%23_Toc376127063
file:///C:/Users/Frank.EFI-FRANKS/Documents/MA/Documents/MA_Bild.docx%23_Toc376127064
file:///C:/Users/Frank.EFI-FRANKS/Documents/MA/Documents/MA_Bild.docx%23_Toc376127065
file:///C:/Users/Frank.EFI-FRANKS/Documents/MA/Documents/MA_Bild.docx%23_Toc376127066
file:///C:/Users/Frank.EFI-FRANKS/Documents/MA/Documents/MA_Bild.docx%23_Toc376127066
file:///C:/Users/Frank.EFI-FRANKS/Documents/MA/Documents/MA_Bild.docx%23_Toc376127067
file:///C:/Users/Frank.EFI-FRANKS/Documents/MA/Documents/MA_Bild.docx%23_Toc376127068
file:///C:/Users/Frank.EFI-FRANKS/Documents/MA/Documents/MA_Bild.docx%23_Toc376127069
file:///C:/Users/Frank.EFI-FRANKS/Documents/MA/Documents/MA_Bild.docx%23_Toc376127070
file:///C:/Users/Frank.EFI-FRANKS/Documents/MA/Documents/MA_Bild.docx%23_Toc376127071
file:///C:/Users/Frank.EFI-FRANKS/Documents/MA/Documents/MA_Bild.docx%23_Toc376127072
file:///C:/Users/Frank.EFI-FRANKS/Documents/MA/Documents/MA_Bild.docx%23_Toc376127073

List of Figures Y

Figure 33: Calibration Of the StEPPETccii it e e et e e e ratr e e s saraeeeeans 16
Figure 34: Simplified flowchart to the function "readLine()".........cooeeiiiireciee e 17
Figure 35: The function executed when "myCommand" is "m" ... 17
Figure 36: Code snippet showing the function "playTone(int _string)"......ccccccoveeeiieviiercee e 18
Figure 37: "stopTone(_string)", used to mute a played toneccceveeieecieeciee e 18
Figure 38: The GuitarBot from another Perspective.......coccviviiiciiii i 19

Unless specified otherwise, the figures were self-created.

file:///C:/Users/Frank.EFI-FRANKS/Documents/MA/Documents/MA_Bild.docx%23_Toc376127074
file:///C:/Users/Frank.EFI-FRANKS/Documents/MA/Documents/MA_Bild.docx%23_Toc376127075
file:///C:/Users/Frank.EFI-FRANKS/Documents/MA/Documents/MA_Bild.docx%23_Toc376127076
file:///C:/Users/Frank.EFI-FRANKS/Documents/MA/Documents/MA_Bild.docx%23_Toc376127077
file:///C:/Users/Frank.EFI-FRANKS/Documents/MA/Documents/MA_Bild.docx%23_Toc376127078
file:///C:/Users/Frank.EFI-FRANKS/Documents/MA/Documents/MA_Bild.docx%23_Toc376127079

List of Abbreviations Vi

List of Abbreviations

ASCII American Standard Code for Information Interchange
CNC Computer Numerical Control

csv Comma-Separated Values

DC Direct Current

HSR Hochschule fir Technik Rapperswil
12C Integrated Circuit

IDE Integrated Development Environment
LED Light Emitting Diode

MIDI Musical Instrument Digital Interface
PWM Pulse-Width Modulation

SD Secure Digital

SPI Serial Peripheral Interface

Appendix

TerminoOlOBY ..ccuciieiiiieiiiiiiiiiiiirirecrs e e sa e see s sensssnsssannans Al
Program Code.....cciiiuiieiiiniiieiiniieiieiiniiiiieiiaiieeiisisissiasssesnes A4
I V7 11 1 S A9
Electrical Scheme......covuiveiiiiiiiiiiirinnrnrnrr e Al10

Terminology

Al

Terminology

Arduino

Array

Blocking

C++

csv

Diode

Fretboard / Fret

Fretter

Arduino (Figure 16) is an open source microcontroller board. The pins are exposed
so that it can be easily connected to other things. The program running on it is writ-

ten in simplified C++.

An array is a list of values. A variable only holds one value, whereas multiple values

can be stored in an array.

In terms of programming, a command can be blocking. This means that the general
flow of a program is interrupted, until the command is fully executed. For example

the rotation of a stepper motor can be a blocking command.

C++ is one of the most popular coding languages. It is often used for embedded
systems because it’'s rather low-level, which can be understood as “close to the

hardware”.

“Comma-Separated Values” is a file format, which allows to store tabular data as
plain text. Like in a table, there are rows and columns. Each line represents one
row. The cells are separated by commas. A sample line of a CSV file can be seen in
chapter 4.3. In the GuitarBot’s CSV files, the values are separated by semicolons.
Since the separator character doesn’t have to be a comma, CSV is also called “Char-

acter-Separated Values”.

A diode is an electronic component which lets current only flow in one direction.

The Fretboard is the board attached to a guitar’s neck. The frets inserted in this
board are used to change the pitch of a tone. The string can be pushed down onto
the fretboard between two frets. Now the string can only vibrate from one fret to

the other end of the string.

The fretter is the part of the GuitarBot which moves along the linear slide. When
toggled, a solenoid with a metal rod through its shaft pulls the string towards it.

The housing of the fretter also acts as the fret itself (Figure 15).

Terminology

Humanoid

int

Linear slide

Microsoft Visio

Muter

Pick

Picker

Pulley

Relay

A2

A robot which is humanoid has a body similar to a human body. For example a head,

two arms and two legs.

int, short for integer, is a data-type. Every time a new variable is created, its data-
type has to be declared. For example in “int x”, the variable “x” can only be filled
with an integer. In “digitalRead(int port)”, it means that the function requests an

integer as an argument (which will be immediately put into the variable “port”).

A linear slide is a bearing which provides free motion in only one dimension (Figure

7).

Microsoft Visio is an application for drawing diagrams and vector graphics. It’s for
example used to draw flowcharts, but it’s also convenient to draw mechanical con-

structions, e.g. the layout to the GuitarBot (Figure 13).

The muter of the GuitarBot is the servo with rubber foam at the end of its arm.
When the muter lowers, the rubber foam mutes the string, and the tone is stopped

(Figure 2).

A plectrum (also called pick) is a tool, usually made of plastic, to strum the strings

of a guitar.

The picker of the GuitarBot is the servo with a pick attached (Figure 2). Up and down
movements of the servo cause the pick to play the string. The pick moving down
across the string is called a downstroke, whereas the pick moving up across the

string is called an upstroke.

A pulley (Figure 6) is a wheel used with a timing belt. It can be used to drive the
timing belt (when connected to a motor), to support the movement of the timing
belt, or to transmit force from the timing belt (when connected to another compo-

nent).

Arelay is an electrically operated switch. It can be toggled using a low power circuit
on one side of the relay. On the other side of the relay, where it acts as a switch,

can be a high power circuit.

Terminology

Servo motor

Shield

Solenoid

Stepper motor

Timing belt

A3

A servo motor (Figure 2), or just servo, is an actuator which allows precise position-

ing. However, a servo has a limited rotary range.

Talking about Arduino, a shield is a board with the pins arranged like the Arduino’s

pins. Hence, it can be easily plugged in by stacking it on top of the Arduino.

In engineering, a solenoid is a device which converts current into a linear force.
There’s a metal rod inside a tightly wound coil. Whenever current flows through
the coil, a magnetic field is created and the metal rod is pulled inside the coil (Figure

5).

A stepper motor (Figure 6), or just stepper, is a motor which divides the rotation
into small steps. By telling the stepper how many steps to take, a precise rotation

can be achieved.

A Timing belt (Figure 3) is a toothed belt which can be used to transfer a rotation
from one axis onto another. In the GuitarBot, a timing belt is used to transform the

rotation into a linear movement.

Program Code
/¢ GuitarEot
A4 created 2013-10-02 by Frank Schaufelherger
Iy
/4 Read commands from 5D card to mowe fretter and play notes, i1.e. play a song on GuitarBot
S¢ command £ile: plain text AACIT ;" delimited with CRLF, i.e. %r and “n at end of each line
/¢ command format: time;string:command:[position]
S/ time: milliseconds
A4 ostring: 0-3
Sf command: mo(mowe), p (play) or = (stop)
f¢ position: only for move: the stepper position (positive in file, negative in program)
/4 remwark: "string” in this context is always the guitar string, not a character string
STHBHEHEAESEAE A SRS AFAFAFE#S LIERARTED SESSHESESSSSRRIRRERERES
#include <50 Io= S4 Arduino's 5D library., uses 3PI
#include <iccelitepper.hs /4 Boocelitepper library
#include <llire.h> /¢ Library used by the PUM3ervolriwver Library
#include <hdafruit PiMServolriver.h> A4 PiMEervoDriver Library
FTREHGEEEFENOC RN EHEY PORTS SEEFSFEEFFIISERFSossaEasEs~/
int BELA¥[] = {29, 27, 31, 33}: f¢ pins for the fretter relays
int IR[] = {48, 49, Al11, Al10}: /¢ pins for the sensors
int 3TEP[] = {36, 38, 42, 44): /4 step pins (stepper)
int DIR[] = {37, 39, 43, 45}; A4 direction pins (stepper)
S¢ Default pins for 3FI bus (50 Card)
Iz THO MEGA
44 MOST 11 &0
A4 MIso 12 5l
£i4 CLE 13 52
/4 Chip Select:
#define PIN_35D_C3 53
STESHSHEEESES SRS EEE (BIECTS S#S4400ESSSSSRESsausasaaE~)
Locelitepper stepperl{iccelitepper: :DRIVER, STEFP[O], DIR[O]): /¢ create the Stepper on string 0
Lpoelitepper atepperl{iccelftepper: :DRIVER, STEF[1], DIE[1]): /¢ create the Stepper on string 1
Aocelitepper stepper(iccelftcepper: iDRIVER, 3TEP[Z], DIR[Z2]): /¢ create the Stepper on string 2
Arooelitepper stepper3(iccelftepper: :DRIVER, STEP[3], DIR[3]): A4 create the Stepper on string 3
Arocelitepper stepper[] = {stepperl, stepperl, stepperld, stepperd}; 7 place the objects in an array
File wyFile; S¢ instance of the file on the 3D card
Adafruic_PiM3ervoDriver pwm = Adafruic PUM3erwvoDriwver(): A4 construct a pwm object (serwo controller)

STHEHESERSHESHEHENSNGH S HSNE PRESETS SESSHSHESTESERSESSESRRSRESETS

int irlimit[] = {300, 300, 300, 300};: £¢ IR walues at position 0
int servolp[] = {480, 500, 520, 4901, 500, 511, 520, 490} ; A4 servo position up (picker and muter)
int serwoDowm[] = {390, 430, 427, 470, 419, 490, 4585, 470%: // servo position dowm (picker and muter)

int maxiteps = -870; A4 lengrh of the slide in steps
A4 (all step positions are negatiwve)
int witepper = 500; /¢ speed in steps per second

44 go faster and the timing belt's slipping)

SEHSHESSEEEA SRS RS STATUS SEESEEHEEREEEEEEEESREREERE)

int servoPos[] = {0, 1, 0, 1, 0, 1, 0, 1% A4 0 =» serwvo is in "up” position. 1 -»> serwo is in "down™ position
int stringReady[] = {1, 1, 1, 1}: f4 1 =% ready to move position (no tone playing, fretter released)
int fileStatus = 0; f4 fileftatus. 0 -> everything okay.

A4 1 -= end of file. >1 -> error on position "fileltatus-1"

A4

Program Code

JTHESSSFSFSFSFSHSHSHSNSES CLOBAL VARTABLES #5454 4845454505850 5888/

unsigned long wyTime; /4 Time [w=) for the comwmand of the current line
/f this lasts for 50 daws, an integer would only cowver 32 seconds
int wyString: /¢ string for the command of the current line
char wyCommand ; /¢ command of the current line ('m', 'p', 's')
int wmySteps; A4 position for the stepper if command = 'm!
int myLine = 0; A4 number of current line [(for debuggiteg)
int irValue[d]: /4 array for sensor walues
unsigned long startTime; // the internal arduino clock at the time when the first commwand is read
int 8Dstatus=0; A4 1 1f init is successtul
/¢ wariables in subroutines with "_" are priwvate, i.e. with local scope

STHBHEEREE SRS REEEEERER SETUT SH4R4HEHEEFEREREREHEREEGEERETT

woid setup() A7 =set up and calibration
{
pinMode (PIN_3D_C3, OUTPIT); A4 pin for 3D Card Zelect
if (5D begin(PIN_2D_C3)) /4 initialize the 5D Card
uyFile = SD.openi(™ght.caw"”, FILE RELD): A4 opens the said file in read-only wmode
if (mwyFile) {
SDetatus=1; /f success
}
i
if (5Dstatus == 0] { S can't read 3D -» exit here
return;
i
pm. beging); /¢ start communicating with the servo controller
pim. setPIMFreq(sl) ; f¢ bdnalog servos run at ~60 Hz updates

forfint i=0; i < 4; i++) // for all stringa...

{
stepper[i].setMaxipead (vitepper) ; Jf maximam speed set to 1000 steps per second
pinMode (IR[1], INPUT): Jf pin settings
pinMode (RELAY[i], OUTFUT): 17
digitalllrite (RELAY[i], HIGH): f¢ turn off the relays
pim. 2etPWM(Z%1, 0, servollp[2+i]): /¢ picker to positcion UP
pvm. setPWM(Z*i+l, 0, serwvoDown[2%i+1]); // muter to position DO
calibrate (i) : /4 rcalibrate the stepper, i.e. go to start position
i
startTime = willi=(); S/ "start ny timer”
}
SRESHSHCECEE GRS F SRR EEY TATN LOOT S50 EHEFFSECHFSS0EREIEsEE)
vold loop ()
{
if((willi=()-startTime) »>= wyTime) /4 1f the time has come... (or already passed)
{
if (myCommand == 'm'} /¢ 1f the command says "move"”
{
wovePosition(ny3tring, wny3teps); /) set the new target for the stepper
}
else if (myCommand == 'p') F4 1f the command says "play’”
{
playTone (my3tring) ; /f play the tone
}
elzse if (myCommand == 's') /¢ 1f the command says "stop”
{
stopTone (myString) 2 A4 stop the tone
}
readline(); /4 read the next line

Program Code

forfint i = 0; i<1000; i++) S/ give about Z0ms to bring the steppers some steps forward
{

forfint 3 = 0; 5 < 4; 3++) Sf for ewery string

{

stepper[s].runipeedToPosition(); /7 mowve the stepper some steps closer to the target position

CTEEHEEEEEERE R RIS EAE a8 CALIBRATE SH4FSRERFFRERRESREEA S
/¢ move the fretter close to the sensor and set this as 0 position
woid calibrate(int _string) {

stepper[_string].setipesdiwitepper); A4 set speed for the stepper
irWalue[_string] = analogRead(IR[_stringl):; // put the sensor walue into the array

whilefir¥Walue[_ string] > irlLimit[_ string]){ ./ run till the beginning of the slide is reached
ir¥alue[_string] = analogRead (IR[_string]):// read from the sensor all the time

stepper[_string].runipeedi): A4 run towards the beginning of the slide
i
stepper[_stringl.stop(): ff stop if reached
stepper[_string]l.setCurrentPosition(0); /4 et current position as 0

JTHGHSEENERFOES SRR NOVE SHSSEFGEISEESETERIERREREERS
/¢ change the target position of the stepper to the pozition in the arqument
wold mowePosition{int _string, int _pos)

{

if{!'stringReady[_string]) { S/ force stop, if not ready to mowe
stopTone|_strineg);

i

if(abs(_pos) > abs(maxiteps)) | f41f _pos dlsn't within range, cancel the method [(absolute value)
return;

}

stepper[_string].moveTol(_pos); /¢ Zet target position

stepper[_string].setipeediwitepper); A4 zet speed (has to be set after moweTofl):)

CTEEHEEEEE IR ER SRR PLAT SOESERSRERRERERREE RS

44 play the tone on the string in the argqument

woid playTone (int _string)

{
int _PICKER = _string * 2; A4 get the picker port number from the string number
int _MUTER = _string * 2 + 1; S4 get the muter port number from the string namber

digitalllrite (RELAY[string], LOW); A4 trigger the fretter
stringReady[_ string] = 0; A4 string is not ready to move position
pwm. setPWM(_MUTER, 0, servolp[MUTER]): A4 lift the muter
if(servoPos[_PICEER]) F4 1f picker is in position "downm™
{

pwvm. setPWM(_PICEER, 0, serwoUp[PICKER]): £/ upstroke

servoPos[PICKER] = 0; /4 update serwo position
}
else A4 1f picker is in position "up™
{

pvm. setPWM(_PICEER, 0, serwvoDowm[PICKEER]): S dowmstroke

servoPos[_ PICEER] = 1: A/ update serwo position
}

STHEHEHEAESESEARARRAFARERERERE DTOD #ESSEEEESSSRSERERFRSETS
S¢ stop the tone on the string in the argqument
woild stopTone (int _string)

{
int _MUTER = _string * 2 + 1; A4 get the muter port number from the string number

pwm. setPM(_MUTER, 0, servolown[_ MUTER]): /4 lower the muter
digitalllrite (FELAY[string], HIGH): /f release the fretter
stringReady[string] = 1; S/ string ready to mowve position

Program Code

STESHSSEEHESCEHEH S EH# 444 DELAD LINE S#4#50545S0S0HFSusage v/

A4 returns 0 if ewerything is ockay, returns 1 if end of file is reached,
Sf returns position + 1 if an error occurred (Eor debugoging)

int readLine()

i

int pos = 1;
char c:
wyTime = 0O;
nysteps = 0;
nyline++;

if('wyFile.available ()]
{ return 1; }

c = nwyFile.read():

pos+H:

S¢ ASCII characters to integers:
S¢ the mumbers (time, string and position) hawe to be conwverted from A3CII characters to integers

44 the AECIT character "0 has the walue 48 as an integer.

I
I
I
I
I

I

I
I

position of the cursor.

currently read character
time of the command is r
walue of steps is reset

iz returned if an error occurred

eset

current line mumber (for debuggineg)

end of file or file not readable

read first char
update position

therefaore "c-45

A4 "l0%myTime™, becuase the numbers are read one by one.

whileic BRI
iffe < '0" 11 o>
{ return pos: }
wyTine =
wyFile.read():
pos+:

Cc o=

c = wyFile.read():

pos+H:

iff{e < '0" || ¢ =
I return pos: }

wysString = intic) - 48;

demicolon

131

c = wyFile.read():
pos+:
if[o l= ')

{ return pos: }

c = nyFile.read():
pos+:
iffe == 'm' [|
{ myCommand = c; }
else
{ return pos; }

c == 'p'

————————————— Gemicolon
c = wyFile.read():
post+:

iff o 1= "2

{ return pos; }

any

10 * wyTime + int(c)

-

I
I

I
I
I

I
I
I

I

I
I
I

I
I
I

I

I
I
I

repeat until the first sewmicolon appears

e

[but at least once)

die if the read character isn't a rumber

see comment abowve, A3CIT characters to integers

read next char
update position

read next char
update position
die if char isn't 0-3

{should be 0-3)

[semicolon, in the last loop)

Fee comment abowve, AICIT characters to integers

read next char
update position

die if char isn't a semicolon

read next char
update position

[shoud be

m',

{should be semicolon)

'p', or

-1

store the char in wyCommand if it's walid

die if it's not walid

read next char
update position

die if char isn't a semicolon

{should be semicolon)

Program Code

S dteps ———m---mmmmm - i
c = nyFile.read(): A4 read next char (nuwber or 'YE')
pos+t: A4 update position
if (wyCommartd == 'm') { A4 1f command is "mowe™, get the position (nySteps)
iffe < '0" |l 2> '8") ff die if the character isn't a number
{ return pos; }
whilejc '= '"hwe'y) | A4 get the rest of the nuwber until the end of the line
wyiteps = 10 * wySteps + incic) - 43; /¢ see comment abowve, A3CIT characters to integers
c = nyFile.read(): A4 read next char [('wr', in the last loop)
postt: A4 update position
}
if (maxiteps < 0) | /f comwert the steps in negatiwve steps,
wyiteps %= (-1): A4 1f the length of the slide is in negatiwve steps
¥
}
else 1f (o !'= '\r'} S4 1f no mwove command: must be a \r

{ return pos;)

A Line Feed --—--------—-— 7
c = nyFile.read(); A4 read next char (should be '‘\n', line feed)
pos++: A4 update position
i1ff ¢ !'= '""n') ff die if char isn't a line feed

{ return pos: }

return 0; A4 ewerything okay

A9

Layout

Layout

wi Em.w
@ @ s
L L4A

J:

| e
L= (@)

@&

Wwg' Szﬂ!

i
U

€ © &
N TN N

EEm..th

32@ qs_@ qz@

EEMLT

| e

A10

Electrical Scheme

Electrical Scheme

2000

P

=

ey wi=
22 .M [

e

w4

mlmrh[h[][j
AR

Dj[]f]rl[]

—
Linet

LI

al
all

Nz_“H__|_||_$._

¥015IS34 dN-11nd [l
T¥YNDIS DOTYNY []
TvNOIS VLol [l

SITOACT []
s110AS [
annoyos []

431411N3dl HOT102

anaiHs

[Tl

= ano

[H\Zl

e
3
i
||
1

[
nzt_l
=
ano—
—
LT
il
-
J\S:

ano!
anol

¥3IMOd

FNJHOS 1VOId10314d

|1
il

e

aerl |l

NMMH:B
wEuie

ﬂ] BQE._M._“:W

2200
HOLOW

A

List of Materials

List of Materials

Allgemein

Holzplatten

Diverse Kabel / Stecker
Breadboard Kabel Set
Distanzbolzen 50mm
Diverse Schrauben

Kiste Utz Rako

Mainboard

Arduino Mega
SD Kartenleser
Relais Modul
Power Supply

Power Molex Connector

Servos

Servo/PWM Driver
Servo Hitec HS-311
Plektron
Distanzbolzen 20mm

Metallbiigel

Antrieb

DIP-Schalter 4P

Big EasyDriver

Heatsink

Halterung fiir 5mm Achse
Montagewinkel NEMA-17
Pulley GT2, 36 Teeth
Pulley GT2, 20 Teeth

GT2 Teeth Belt

NEMA-17 Stepper Motor

Bezugsquelle

Coop
Play-Zone.ch
Play-Zone.ch
Conrad.ch
Coop

Jumbo

sparkfun.com
Play-Zone.ch
Play-Zone.ch
sparkfun.com

sparkfun.com

Play-Zone.ch
Conrad.ch
Musik Hug
Conrad.ch

Bauhaus

Play-Zone.ch
sparkfun.com
sparkfun.com
hobbymodellbau.ch
physicalcomputing.at
robodigg.com
robodigg.com
robodigg.com

robodigg.com

All

Anzahl

T N S S

A A b~ 00 b

List of Materials

Fretter
Linearfihrung
IR Sensor
Widerstandsnetzwerk
Zylinderspule
Alu Blech

Saiten
Gitarren-Saiten
Ringschrauben
Distanzbolzen 60mm

Saiten-Spanner

igus.ch
physicalcomputing.at
Conrad.ch

Conrad.ch

Coop

Musik Hug
Coop
Pusterla

(im Keller gefunden)

4
4
2
5 (1 ging kaputt)
1

~ 00 00 b

Al2

Declaration of Authenticity

| hereby declare that the work submitted is my own and that all passages and ideas that are not mine

have been fully and properly acknowledged.

Place and date:

Signature:

